首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The driving forces and processes associated with the development of phase separation upon thermal annealing are investigated in solution‐processed small molecule bulk heterojunction (BHJ) organic solar cells utilizing a diketopyrrolopyrrole‐based donor molecule and a fullerene acceptor (PCBM). In‐situ thermal annealing X‐ray scattering is used to monitor the development of thin film crystallization and phase separation and reveals that the development of blend phase separation strongly correlates with the nucleation of donor crystallites. Additionally, these morphological changes lead to dramatic increases in blend electron mobility and solar cell figures of merit. These results indicate that donor crystallization is the driving force for blend phase separation. It is hypothesized that donor crystallization from an as‐cast homogeneous donor:acceptor blend simultaneously produces donor‐rich domains, consisting largely of donor crystallites, and acceptor‐rich domains, formed from previously mixed regions of the film that have been enriched with acceptor during donor crystallization. Control of donor crystallization in solution‐processed small molecule BHJ solar cells employing PCBM is thus emphasized as an important strategy for the engineering of the nanoscale phase separated, bicontinuous morphology necessary for the fabrication of efficient BHJ photovoltaic devices.  相似文献   

2.
Here, conjugated polymer is added as third component to tune the solution viscosity, morphology, and function of small molecule (SM) based bulk‐heterojunction (BHJ) solar cells, which are fabricated using blade coating. Novel information about the effect of blade coating speed on the nanoscale morphology and function of ternary blend solar cells is provided. The crystal sizes increase with an increase of coating speed for both binary and ternary blends, while the addition of the third component tends to favor smaller SM crystal grains and improves the connectivity of SM crystals. Small angle neutron scattering experiments provide the first clear experimental evidence that the addition of the third component would significantly impact the fullerene phase separation, which is crucial for bimolecular recombination and charge transport. It shows that for both binary and ternary blends, the concentration and sizes of [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) aggregates increase with an increase of coating speed, while addition of third component does not affect the volume fraction of PCBM aggregates but impacts the size of PCBM aggregates. It is demonstrated that the judicious selection of blade coating speed and addition of conjugated polymer optimize the morphology of SM‐BHJ, providing guidelines for high performance SM‐BHJs from roll‐to‐roll production.  相似文献   

3.
Achieving efficient bulk‐heterojunction (BHJ) solar cells from blends of solution‐processable small‐molecule (SM) donors and acceptors is proved particularly challenging due to the complexity in obtaining a favorable donor–acceptor morphology. In this report, the BHJ device performance pattern of a set of analogous, well‐defined SM donors— DR3TBDTT ( DR3 ), SMPV1 , and BTR —used in conjunction with the SM acceptor IDTTBM is examined. Examinations show that the nonfullerene “All‐SM” BHJ solar cells made with DR3 and IDTTBM can achieve power conversion efficiencies (PCEs) of up to ≈4.5% (avg. 4.0%) when the solution‐processing additive 1,8‐diiodooctane (DIO, 0.8% v/v) is used in the blend solutions. The figures of merit of optimized DR3:IDTTBM solar cells contrast with those of “as‐cast” BHJ devices from which only modest PCEs <1% can be achieved. Combining electron energy loss spectrum analyses in scanning transmission electron microscopy mode, carrier transport measurements via “metal‐insulator‐semiconductor carrier extraction” methods, and systematic recombination examinations by light‐dependence and transient photocurrent analyses, it is shown that DIO plays a determining role—establishing a favorable lengthscale for the phase‐separated SM donor–acceptor network and, in turn, improving the balance in hole/electron mobilities and the carrier collection efficiencies overall.  相似文献   

4.
The composition of polymer‐fullerene blends is a critical parameter for achieving high efficiencies in bulk‐heterojunction (BHJ) organic photovoltaics. Achieving the “right” materials distribution is crucial for device optimization as it greatly influences charge‐carrier mobility. The effect of the vertical concentration profile of materials in spin‐coated BHJs on device properties has stirred particularly vigorous debate. Despite available literature on this subject, the results are often contradictory and inconsistent, likely due to differences in sample preparation and experimental considerations. To reconcile published results, the influence of heating, surface energy, and solvent additives on vertical segregation and doping in polymer‐fullerene BHJ organic photovoltaics are studied using neutron reflectometry and near edge X‐ray absorption fine structure spectroscopy. It is shown that surface energies and solvent additives greatly impact heat‐induced vertical segregation. Interface charging due to Fermi level mismatch increases (6,6)‐phenyl‐C61‐butyric acid methyl ester (PCBM)‐enrichment at the BHJ/cathode interface. Current–voltage measurements show that self‐assembly of interfaces affects the open‐circuit voltage, resulting in clear changes to the power conversion efficiency.  相似文献   

5.
Changes in the nanoscale morphologies of the blend films of poly (3‐hexylthiophene) (P3HT) and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM), for high‐performance bulk‐heterojunction (BHJ) solar cells, are compared and investigated for two annealing treatments with different morphology evolution time scales, having special consideration for the diffusion and aggregation of PCBM molecules. An annealing condition with relatively fast diffusion and aggregation of the PCBM molecules during P3HT crystallization results in poor BHJ morphology because of prevention of the formation of the more elongated P3HT crystals. However, an annealing condition, accelerating PCBM diffusion after the formation of a well‐ordered morphology, results in a relatively stable morphology with less destruction of crystalline P3HT. Based on these results, an effective strategy for determining an optimized annealing treatment is suggested that considers the effect of relative kinetics on the crystallization of the components for a blend film with a new BHJ materials pair, upon which BHJ solar cells are based.  相似文献   

6.
Well‐defined small molecule (SM) donors can be used as alternatives to π‐conjugated polymers in bulk‐heterojunction (BHJ) solar cells with fullerene acceptors (e.g., PC61/71BM). Taking advantage of their synthetic tunability, combinations of various donor and acceptor motifs can lead to a wide range of optical, electronic, and self‐assembling properties that, in turn, may impact material performance in BHJ solar cells. In this report, it is shown that changing the sequence of donor and acceptor units along the π‐extended backbone of benzo[1,2‐b:4,5‐b′]dithiophene–6,7‐difluoroquinoxaline SM donors critically impacts (i) molecular packing, (ii) propensity to order and preferential aggregate orientations in thin‐films, and (iii) charge transport in BHJ solar cells. In these systems ( SM1‐3 ), it is found that 6,7‐difluoroquinoxaline ([2F]Q) motifs directly appended to the central benzo[1,2‐b:4,5‐b′]dithiophene (BDT) unit yield a lower‐bandgap analogue ( SM1 ) with favorable molecular packing and aggregation patterns in thin films, and optimized BHJ solar cell efficiencies of ≈6.6%. 1H‐1H DQ‐SQ NMR analyses indicate that SM1 and its counterpart with [2F]Q motifs substituted as end‐group SM3 possess distinct self‐assembly patterns, correlating with the significant charge transport and BHJ device efficiency differences observed for the two analogous SM donors (avg. 6.3% vs 2.0%, respectively).  相似文献   

7.
The efficiency of bulk heterojunction (BHJ) organic photovoltaics is sensitive to the morphology of the fullerene network that transports electrons through the device. This sensitivity makes it difficult to distinguish the contrasting roles of local electron mobility (how easily electrons can transfer between neighboring fullerene molecules) and macroscopic electron mobility (how well‐connected is the fullerene network on device length scales) in solar cell performance. In this work, a combination of density functional theory (DFT) calculations, flash‐photolysis time‐resolved microwave conductivity (TRMC) experiments, and space‐charge‐limit current (SCLC) mobility estimates are used to examine the roles of local and macroscopic electron mobility in conjugated polymer/fullerene BHJ photovoltaics. The local mobility of different pentaaryl fullerene derivatives (so‐called ‘shuttlecock’ molecules) is similar, so that differences in solar cell efficiency and SCLC mobilities result directly from the different propensities of these molecules to self‐assemble on macroscopic length scales. These experiments and calculations also demonstrate that the local mobility of phenyl‐C60 butyl methyl ester (PCBM) is an order of magnitude higher than that of other fullerene derivatives, explaining why PCBM has been the acceptor of choice for conjugated polymer BHJ devices even though it does not form an optimal macroscopic network. The DFT calculations indicate that PCBM's superior local mobility comes from the near‐spherical nature of its molecular orbitals, which allow strong electronic coupling between adjacent molecules. In combination, DFT and TRMC techniques provide a tool for screening new fullerene derivatives for good local mobility when designing new molecules that can improve on the macroscopic electron mobility offered by PCBM.  相似文献   

8.
The recombination dynamics of charge carriers in organic bulk‐heterojunction (BHJ) solar cells made of the blend system poly(2,5‐bis(3‐dodecylthiophen‐2‐yl)thieno[2,3‐b]thiophene) (pBTCT‐C12):[6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) with a donor–acceptor ratio of 1:1 and 1:4 are studied here. The techniques of charge‐carrier extraction by linearly increasing voltage (photo‐CELIV) and, as local probe, time‐resolved microwave conductivity are used. A difference of one order of magnitude is observed between the two blends in the initially extracted charge‐carrier concentration in the photo‐CELIV experiment, which can be assigned to an enhanced geminate recombination that arises through a fine interpenetrating network with isolated phase regions in the 1:1 pBTCT‐C12:PC61BM BHJ solar cells. In contrast, extensive phase segregation in 1:4 blend devices leads to an efficient polaron generation that results in an increased short‐circuit current density of the solar cells. For both studied ratios a bimolecular recombination of polarons is found using the complementary experiments. The charge‐carrier decay order of above two for temperatures below 300 K can be explained on the basis of a release of trapped charges. This mechanism leads to delayed bimolecular recombination processes. The experimental findings can be generalized to all polymer:fullerene blend systems allowing for phase segregation.  相似文献   

9.
This study has proposed to use a well‐defined oligomer F4TBT4 to replace its analogue polymer as electron acceptor toward tuning the phase separation behavior and enhancing the photovoltaic performance of all‐polymer solar cells. It has been disclosed that the oligomer acceptor favors to construct pure and large‐scale phase separation in the polymer:oligomer blend film in contrast to the polymer:polymer blend film. This gets benefit from the well‐defined structure and short rigid conformation of the oligomer that endows it aggregation capability and avoids possible entanglement with the polymer donor chains. The charge recombination is to some extent suppressed and charge extraction is also improved. Finally, the P3HT:F4TBT4 solar cells not only output a high VOC above 1.2 V, but also achieve a power conversion efficiency of 4.12%, which is two times higher than the P3HT:PFTBT solar cells and is comparable to the P3HT:PCBM solar cells. The strategy of constructing optimum phase separation with oligomer to replace polymer opens up new prospect for the further improvement of the all‐polymer solar cells.  相似文献   

10.
Here, an investigation of three‐dimensional (3D) morphologies for bulk heterojunction (BHJ) films based on regioregular poly(3‐hexylthiophene) (P3HT) and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) is reported. Based on the results, it is demonstrated that optimized post‐treatment, such as solvent annealing, forces the PCBM molecules to migrate or diffuse toward the top surface of the BHJ composite films, which induces a new vertical component distribution favorable for enhancing the internal quantum efficiency (ηIQE ) of the devices. To investigate the 3D BHJ morphology, novel time‐of‐flight secondary‐ion mass spectroscopy studies are employed along with conventional methods, such as UV‐vis absorption, X‐ray diffraction, and high‐resolution transmission electron microscopy studies. The ηIQE of the devices are also compared after solvent annealing for different times, which clearly shows the effect of the vertical component distribution on the performance of BHJ polymer solar cells. In addition, the fabrication of high‐performance P3HT:PCBM solar cells using the optimized solvent‐annealing method is reported, and these cells show a mean power‐conversion efficiency of 4.12% under AM 1.5G illumination conditions at an intensity of 100 mW cm?2.  相似文献   

11.
The performance of bulk‐heterojunction solar cells based on a phase‐separated mixture of donor and acceptor materials is known to be critically dependent on the morphology of the active layer. Here we use a combination of techniques to resolve the morphology of spin cast films of poly(p‐phenylene vinylene)/methanofullerene blends in three dimensions on a nanometer scale and relate the results to the performance of the corresponding solar cells. Atomic force microscopy (AFM), transmission electron microscopy (TEM), and depth profiling using dynamic time‐of‐flight secondary ion mass spectrometry (TOF‐SIMS) clearly show that for the two materials used in this study, 1‐(3‐methoxycarbonyl)propyl‐1‐phenyl‐[6,6]‐methanofullerene (PCBM) and poly[2‐methoxy‐5‐(3′,7′‐dimethyloctyloxy)‐1,4‐phenylene vinylene] (MDMO‐PPV), phase separation is not observed up to 50 wt.‐% PCBM. Nanoscale phase separation throughout the film sets in for concentrations of more than 67 wt.‐% PCBM, to give domains of rather pure PCBM in a homogenous matrix of 50:50 wt.‐% MDMO‐PPV/PCBM. Electrical characterization, under illumination and in the dark, of the corresponding photovoltaic devices revealed a strong increase of power conversion efficiency when the phase‐separated network develops, with a sharp increase of the photocurrent and fill factor between 50 and 67 wt.‐% PCBM. As the phase separation sets in, enhanced electron transport and a reduction of bimolecular charge recombination provide the conditions for improved performance. The results are interpreted in terms of a model that proposes a hierarchical build up of two cooperative interpenetrating networks at different length scales.  相似文献   

12.
Research relating to organic solar cells based on solution‐processed, bulk heterojunction (BHJ) films has been dominated by polymeric donor materials, as they typically have better film‐forming characteristics and film morphology than their small‐molecule counterparts. Despite these morphological advantages, semiconducting polymers suffer from synthetic reproducibility and difficult purification procedures, which hinder their commercial viability. Here, a non‐polymeric, diketopyrrolopyrrole‐based donor material that can be solution processed with a fullerene acceptor to produce good quality films is reported. Thermal annealing leads to suitable phase separation and material distribution so that highly effective BHJ morphologies are obtained. The frontier orbitals of the material are well aligned with those of the fullerene acceptor, allowing efficient electron transfer and suitable open‐circuit voltages, leading to power conversion efficiencies of 4.4 ± 0.4% under AM1.5G illumination (100 mW cm?2). Small molecules can therefore be solution processed to form high‐quality BHJ films, which may be used for low‐cost, flexible organic solar cells.  相似文献   

13.
A simple method is demonstrated to improve the film‐forming properties and air stability of a conjugated polyelectrolyte (CPE) without complicated synthesis of new chemical structures. An anionic surfactant, sodium dodecybenzenesulfonate (SDS), is mixed with cationic CPEs. The electrostatic attraction between these two oppositely‐charged materials provides the driving force to form a stable CPE‐surfactant complex. Compared with a pure CPE, this electrostatic complex is not only compatible with highly hydrophobic bulk‐heterojunction (BHJ) films, e.g. poly(3‐hexylthiophene):[6,6]‐phenyl C61 butyric acid methyl ester (P3HT:PCBM), but also works well with other low bandgap polymer‐based BHJ films. Using this complex as a cathode interface layer, a high power conversion efficiency of 4% can be obtained in P3HT:PCBM solar cells together with improved stability in air. Moreover, ~20% performance enhancement can also be achieved when the complex is used as an interlayer to replace calcium metal for low bandgap polymer‐based BHJ systems.  相似文献   

14.
The morphological, bipolar charge‐carrier transport, and photovoltaic characteristics of poly(3‐alkylthiophene) (P3AT):[6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) blends are studied as a function of alkyl side‐chain length m, where m equals the number of alkyl carbon atoms. The P3ATs studied are poly(3‐butylthiophene) (P3BT, m = 4), poly(3‐pentylthiophene) (P3PT, m = 5), and poly(3‐hexylthiophene) (P3HT, m = 6). Solar cells with these blends deliver similar order of photo‐current yield (exceeding 10 mA cm?2) irrespective of side‐chain length. Power conversion efficiencies of 3.2, 4.3, and 4.6% are within reach using solar cells with active layers of P3BT:PCBM (1:0.8), P3PT:PCBM (1:1), and P3HT:PCBM (1:1), respectively. A difference in fill factor values is found to be the main source of efficiency difference. Morphological studies reveal an increase in the degree of phase separation with increasing alkyl chain length. Moreover, while P3PT:PCBM and P3HT:PCBM films have similar hole mobility, measured by hole‐only diodes, the hole mobility in P3BT:PCBM lowers by nearly a factor of four. Bipolar measurements made by field‐effect transistor showed a decrease in the hole mobility and an increase in the electron mobility with increasing alkyl chain length. Balanced charge transport is only achieved in the P3HT:PCBM blend. This, together with better processing properties, explains the superior properties of P3HT as a solar cell material. P3PT is proved to be a potentially competitive material. The optoelectronic and charge transport properties observed in the different P3AT:PCBM bulk heterojunction (BHJ) blends provide useful information for understanding the physics of BHJ films and the working principles of the corresponding solar cells.  相似文献   

15.
A new donor (D)–acceptor (A) conjugate, benzodithiophene‐rhodanine–[6,6]‐phenyl‐C61 butyric acid methyl ester (BDTRh–PCBM) comprising three covalently linked blocks, one of p‐type oligothiophene containing BDTRh moieties and two of n‐type PCBM, is designed and synthesized. A single component organic solar cell (SCOSC) fabricated from BDTRh–PCBM exhibits the power conversion efficiency (PCE) of 2.44% and maximum external quantum efficiency of 46%, which are the highest among the reported efficiencies so far. The SCOSC device shows efficient charge transfer (CT, ≈300 fs) and smaller CT energy loss, resulting in the higher open‐circuit voltage of 0.97 V, compared to the binary blend (BDTRh:PCBM). Because of the integration of the donor and acceptor in a single molecule, BDTRh‐PCBM has a specific D–A arrangement with less energetic disorder and reorganization energy than blend systems. In addition, the SCOSC device shows excellent device and morphological stabilities, showing no degradation of PCE at 80 °C for 100 h. The SCOSC approach may suggest a great way to suppress the large phase segregation of donor and acceptor domains with better morphological stability compared to the blend device.  相似文献   

16.
Bulk‐heterojunction solar cells are reported with an enhanced power conversion efficiency (PCE) based on a newly designed semiconducting selenophene‐thienopyrrolodione (TPD) copolymer blended with [6,6]‐phenyl C71 butyric acid methyl‐ester. The solar cells are fabricated using simple solution processing (implying low‐cost fabrication). The relatively deep highest occupied molecular orbital (HOMO) level leads to a correspondingly high open‐circuit voltage of 0.88 V. The PCE approaches 5.8% when Clevious P VP AI4083 is used as the hole‐transport interlayer, with an optimized active layer thickness of approximately 95 nm, and a donor‐acceptor blend ratio of 1:1. A fill factor (FF) of 0.62 is achieved. The use of additives does not seem to be beneficial in this blended system, due to the achievement of proper phase separation in the as‐cast films. Also, the BHJ devices with a 3% ratio of a 1‐chloronaphthalene (CN) additive exhibit much more severe oxidative degradation from the decreased FF with a high series resistance than BHJ devices without additive. The selenophene‐TPD based BHJ solar cell is a promising candidate for high‐performance single cells with a low‐cost additive‐free fabrication and a long‐term stable operation.  相似文献   

17.
The organization of organic semiconductor molecules in the active layer of organic electronic devices has important consequences to overall device performance. This is due to the fact that molecular organization directly affects charge carrier mobility of the material. Organic field‐effect transistor (OFET) performance is driven by high charge carrier mobility while bulk heterojunction (BHJ) solar cells require balanced hole and electron transport. By investigating the properties and device performance of three structural variations of the fluorenyl hexa‐peri‐hexabenzocoronene (FHBC) material, the importance of molecular organization to device performance was highlighted. It is clear from 1H NMR and 2D wide‐angle X‐ray scattering (2D WAXS) experiments that the sterically demanding 9,9‐dioctylfluorene groups are preventing π–π intermolecular contact in the hexakis‐substituted FHBC 4 . For bis‐substituted FHBC compounds 5 and 6 , π–π intermolecular contact was observed in solution and hexagonal columnar ordering was observed in solid state. Furthermore, in atomic force microscopy (AFM) experiments, nanoscale phase separation was observed in thin films of FHBC and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) blends. The differences in molecular and bulk structural features were found to correlate with OFET and BHJ solar cell performance. Poor OFET and BHJ solar cells devices were obtained for FHBC compound 4 while compounds 5 and 6 gave excellent devices. In particular, the field‐effect mobility of FHBC 6 , deposited by spin‐casting, reached 2.8 × 10?3 cm2 V?1 s and a power conversion efficiency of 1.5% was recorded for the BHJ solar cell containing FHBC 6 and PC61BM.  相似文献   

18.
The performance of bulk‐heterojunction (BHJ) solar cells is strongly correlated with the nanoscale structure of the active layer. Various processing techniques have been explored to improve the nanoscale morphology of the BHJ layer, e.g., by varying the casting solvent, thermal annealing, solvent annealing, and solvent additives. This paper highlights the role of residual solvent in the “dried” BHJ layer, and the effect of residual solvents on PCBM diffusion and ultimately the stability of the morphology. We show that solvent is retained within the BHJ film despite prolonged heat treatment, leading to extensive phase separation, as demonstrated by the growth in the size and quantity of PCBM agglomerates. The addition of a small volume fraction of nitrobenzene to the casting solution inhibits the diffusion of PCBM in the dry film, resulting in smaller PCBM agglomerates, and improves the fill factor of the BHJ device to 0.61 without further tempering. The addition of nitrobenzene also increases the P3HT crystalline content, while increasing the onset temperature for melting of P3HT side chains and backbone. The melting temperature for PCBM is also higher with the nitrobenzene additive present.  相似文献   

19.
We propose a new method to form small‐molecule based bulk heterojunctions (SM‐BHJs) through alternative thermal deposition (ATD), which is a simple modification of conventional thermal evaporation. By ATD, the thicknesses of alternative donor and acceptor layers are precisely controlled down to 0.1 nm, which is critical to form BHJs. The formation of a BHJ in copper(II) phthalocyanine (CuPc) and fullerene (C60) systems is confirmed by atomic force microscopy (AFM), grazing incidence X‐ray small angle scattering (GISAXS), and absorption measurements. From analysis of the data, we find that the CuPc|C60 films fabricated by ATD are composed of nanometer sized disk‐shaped CuPc nano grains and aggregated C60, which explains the phase separation of CuPc and C60. On the other hand, the co‐deposited CuPc:C60 films do not show the existence of separated CuPc nano grains in the CuPc:C60 matrix. The OPV cells fabricated using the ATD method show significantly enhanced power conversion efficiency compared to the co‐deposited OPV cells with the same composition.  相似文献   

20.
For organic photovoltaic (OPV) cells based on the bulk heterojunction (BHJ) structure, it remains challenging to rationally control the degree of phase separation and percolation within blends of donors and acceptors to secure optimal charge separation and transport. Reported is a bottom‐up, supramolecular approach to BHJ OPVs wherein tailored hydrogen bonding (H‐bonding) interactions between π‐conjugated electron donor molecules encourage formation of vertically aligned donor π‐stacks while simultaneously suppressing lateral aggregation; the programmed arrangement facilitates fine mixing with fullerene acceptors and efficient charge transport. The approach is illustrated using conventional linear or branched quaterthiophene donor chromophores outfitted with terminal functional groups that are either capable or incapable of self‐complementary H‐bonding. When applied to OPVs, the H‐bond capable donors yield a twofold enhancement in power conversion efficiency relative to the comparator systems, with a maximum external quantum efficiency of 64%. H‐bond promoted assembly results in redshifted absorption (in neat films and donor:C60 blends) and enhanced charge collection efficiency despite disparate donor chromophore structure. Both features positively impact photocurrent and fill factor in OPV devices. Film structural characterization by atomic force microscopy, transmission electron microscopy, and grazing incidence wide angle X‐ray scattering reveals a synergistic interplay of lateral H‐bonding interactions and vertical π‐stacking for directing the favorable morphology of the BHJ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号