首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Silver nanowire coatings are an attractive alternative to indium tin oxide for producing transparent conductors. To fabricate coatings with low sheet resistance required for touchscreen displays, a multi‐layer network of silver nanowires must be produced that may not be cost effective. This problem is counteracted here by modifying the electrical properties of an ultra‐low‐density nanowire network through local deposition of conducting graphene platelets. Unlike other solution‐processed materials, such as graphene oxide, our pristine graphene is free of oxygen functional groups, resulting in it being electrically conducting without the need for further chemical treatment. Graphene adsorption at inter‐wire junctions as well as graphene connecting adjacent wires contributes to a marked enhancement in electrical properties. Using our approach, the amount of nanowires needed to produce viable transparent electrodes could be more than 50 times less than the equivalent pristine high density nanowire networks, thus having major commercial implications. Using a laser ablation process, it is shown that the resulting films can be patterned into individual electrode structures, which is a pre‐requisite to touchscreen sensor fabrication.  相似文献   

2.
Graphene produced by chemical vapor deposition (CVD) has attracted great interest as a transparent conducting material, due to its extraordinary characteristics such as flexibility, optical transparency, and high conductivity, especially in next‐generation displays. Graphene‐based novel electrodes have the potential to satisfy the important factors for high‐performance flexible organic light‐emitting diodes (OLEDs) in terms of sheet resistance, transmittance, work function, and surface roughness. In this study, flexible and transparent graphene electrode architecture is proposed by adopting a selective defect healing technique for CVD‐grown graphene, which results in several benefits that produce high‐performance devices with excellent stabilities. The proposed architecture, which has a multi‐layer graphene structure treated by a layer‐by‐layer healing process, exhibits significant improvement in sheet resistance with high optical transparency. For improving the charge transport property and mechanical robustness, various defect sites of the CVD‐grown graphene are successfully decorated with gold nanoparticles through a simple electroplating (EP) method. Further, a graphene‐based OLED device that integrates the proposed electrode architecture on flexible substrates is demonstrated. Therefore, this architecture provides a new strategy to fabricate graphene electrode in OLEDs, extending graphene's immense potential as an advanced conductor toward high‐performance, flexible, and transparent displays.  相似文献   

3.
Ordered mesoporous carbon (OMC) is considered one of the most promising materials for electric double layer capacitors (EDLC) given its low‐cost, high specific surface area, and easily accessed ordered pore channels. However, pristine OMC electrode suffers from poor electrical conductivity and mechanical flexibility, whose specific capacitance and cycling stability is unsatisfactory in flexible devices. In this work, OMC is coated on the surface of highly conductive three‐dimensional graphene foam, serving as both charge collector and flexible substrate. Upon further decoration with silver nanowires (Ag NWs), the novel architecture of Ag NWs/3D‐graphene foam/OMC (Ag‐GF‐OMC) exhibits exceptional electrical conductivity (up to 762 S cm?1) and mechanical robustness. The Ag‐GF‐OMC electrodes in flexible supercapacitors reach a specific capacitance as high as 213 F g?1, a value five‐fold higher than that of the pristine OMC electrode. Moreover, these flexible electrodes also exhibit excellent long‐term stability with >90% capacitance retention over 10 000 cycles, as well as high energy and power density (4.5 Wh kg?1 and 5040 W kg?1, respectively). This study provides a new procedure to enhance the device performance of OMC based supercapacitors, which is a promising candidate for the application of flexible energy storage devices.  相似文献   

4.
The reliability of chronic, brain‐penetrating electrodes must be improved for these ‐neural recording technologies to be viable in widespread clinical applications. One approach to improving electrode reliability is to reduce the foreign body response at the probe‐tissue interface. In this work, silk fibroin is investigated as a candidate material for fabricating mechanically dynamic neural probes with enhanced biocompatibility compared to traditional electrode materials. Silk coatings are applied to flexible cortical electrodes to produce devices that transition from stiff to flexible upon hydration. Theoretical modeling and in vitro testing show that the silk coatings impart mechanical properties sufficient for the electrodes to penetrate brain tissue. Further, it is demonstrated that silk coatings may reduce some markers of gliosis in an in vitro model and that silk can encapsulate and release the gliosis‐modifying enzyme chondroitinase ABC. This work establishes a basis for future in vivo studies of silk‐based brain‐penetrating electrodes, as well as the use of silk materials for other applications in the central nervous system where gliosis must be controlled.  相似文献   

5.
Reduced graphene oxide (rGO)‐based materials have shown good performance as electrodes in flexible energy storage devices owing to their physical properties, high specific surface area, and excellent electrical conductivity. Here, a novel road is reported for fabricating high‐performance supercapacitors based on 3D rGO electrodes and solid electrolyte multilayers via pressure spray printing and machine coating. These supercapacitors demonstrate high and adjustable volumetric capacitance, excellent flexibility, and stretchability. The results show that this commercial strategy has its essential merits such as low‐cost, inexpensive, and simple fabrication for large area production. These properties are in the favor of fabricating high‐performance supercapacitor to meet the practical energy demands in devices, especially flexible electronic devices. Furthermore, this novel 3D interdigital electrode concept can be widely applied to other energy devices for enhancing performances and to other micro devices for reducing cost.  相似文献   

6.
石墨烯的高晶体质量、高电导率、单层结构以及与有机半导体的良好兼容性使其成为纳米器件和分子器件的理想电极材料,纳米间隙电极对是构筑纳米器件的基础,发展了两种制备石墨烯纳米间隙电极对的方法——纳米线和金丝交替掩膜法以及原子力针尖裁剪法,其过程简单,制备的石墨烯间隙为100~200 nm.石墨烯纳米间隙电极对是制备纳米器件、...  相似文献   

7.
The use of solution‐processable electrically conducting films is imperative for realizing next‐generation flexible and wearable devices in a large‐scale and economically viable way. However, the conventional approach of simply complexing metallic nanoparticles with a polymeric medium leads to a tradeoff between electrical conductivity and material properties. To address this issue, in this study, a novel strategy is presented for fabricating all‐solution‐processable conducting films by means of metal/polyelectrolyte complexation to achieve controlled electrical percolation; this simultaneously imparts superior electrical conductivity and good mechanical properties. A polymeric matrix comprised of polyelectrolyte multilayers is first formed using layer‐by‐layer assembly, and then Ag nanoparticles are gradually synthesized and gradationally distributed inside the polymeric matrix by means of a subsequent procedure of repeated cationic exchange and reduction. During this process, electrical percolation between Ag nanoparticles and networking of electrical pathways is facilitated in the surface region of the complexed film, providing outstanding electrical conductivity only one order of magnitude less than that of metallic Ag. At the same time, the polymer‐rich underlying region imparts strong, yet compliant, binding characteristics to the upper Ag‐containing conducting region while allowing highly flexible mechanical deformations of bending and folding, which consequently makes the system outperform existing materials.  相似文献   

8.
The first reduction methodology, compatible with flexible, temperature‐sensitive substrates, for the production of reduced spin‐coated graphene oxide (GO) electrodes is reported. It is based on the use of a laser beam for the in situ, non‐thermal, reduction of spin‐coated GO films on flexible substrates over a large area. The photoreduction process is one‐step, facile, and is rapidly carried out at room temperature in air without affecting the integrity of the graphene lattice or the flexibility of the underlying substrate. Conductive graphene films with a sheet resistance of as low as 700 Ω sq?1 and transmittance of 44% can be obtained, much higher than can be achieved for flexible layers reduced by chemical means. As a proof of concept of our technique, laser‐reduced GO (LrGO) films are utilized as transparent electrodes in flexible, bulk heterojunction, organic photovoltaic (OPV) devices, replacing the traditional ITO. The devices displayed a power‐conversion efficiency of 1.1%, which is the highest reported so far for OPV device incorporating reduced GO as the transparent electrode. The in situ non‐thermal photoreduction of spin‐coated GO films creates a new way to produce flexible functional graphene electrodes for a variety of electronic applications in a process that carries substantial promise for industrial implementation.  相似文献   

9.
A new type of thin‐film electrode that does not utilize conducting polymers or traditional metal or chemical vapor deposition methods has been developed to create ultrathin flexible electrodes for fuel cells. Using the layer‐by‐layer (LbL) technique, carbon–polymer electrodes have been assembled from polyelectrolytes and stable carbon colloidal dispersions. Thin‐film LbL polyelectrolyte–carbon electrodes (LPCEs) have been successfully assembled atop both metallic and non‐metallic, porous and non‐porous substrates. These electrodes exhibit high electronic conductivities of 2–4 S cm–1, and their porous structure provides ionic conductivities in the range of 10–4 to 10–3 S cm–1. The electrodes show remarkable stability towards oxidizing, acidic, or delaminating basic solutions. In particular, an LPCE consisting of poly(diallyldimethyl ammonium chloride)/poly(2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid)/carbon–platinum assembled on a porous stainless steel support yields an open‐circuit potential similar to that of a pure platinum electrode. With LbL carbon–polymer electrodes, the membrane‐electrode assembly (MEA) in a fuel cell can be made several times thinner, assume multiple geometries, and hence be more compact. The mechanism for LPCE deposition, electrode structure, and miniaturization will be presented and discussed, and demonstrations of the LbL electrodes in a traditional Nafion‐based proton fuel cell and the first demonstration of a thin‐film hydrogen–air “soft” fuel cell fully constructed using multilayer assembly are described.  相似文献   

10.
Developing scalable methods to produce large quantities of high‐quality and solution‐processable graphene is essential to bridge the gap between laboratory study and commercial applications. Here an efficient electrochemical dual‐electrode exfoliation approach is developed, which combines simultaneous anodic and cathodic exfoliation of graphite. Newly designed sandwich‐structured graphite electrodes which are wrapped in a confined space with porous metal mesh serve as both electrodes, enabling a sufficient ionic intercalation. Mechanism studies reveal that the combination of electrochemical intercalation with subsequent thermal decomposition results in drastic expansion of graphite toward high‐efficiency production of graphene with high quality. By precisely controlling the intercalation chemistry, the two‐step approach leads to graphene with outstanding yields (85% and 48% for cathode and anode, respectively) comprising few‐layer graphene (1–3 layers, >70%), ultralow defects (ID/IG < 0.08), and high production rate (exceeding 25 g h?1). Moreover, its excellent electrical conductivity (>3 × 104 S m?1) and great solution dispersibility in N‐methyl pyrrolidone (10 mg mL?1) enable the fabrication of highly conductive (11 Ω sq?1) and flexible graphene films by inkjet printing. This simple and efficient exfoliation approach will facilitate the development of large‐scale production of high‐quality graphene and holds great promise for its wide application.  相似文献   

11.
Flexible supercapacitors have potential for wearable energy storage due to their high energy/power densities and long operating lifetimes. High electrochemical performance with robust mechanical properties is highly desired for flexible supercapacitor electrodes. Usually, the mechanical properties are improved by choosing high flexible textile substrates but at the much expense of electrochemical performance due to the nonideal contact between conductive materials and textile substrates. Herein, the authors present an efficient, scalable, and general strategy for the simultaneous fabrication of high‐performance textile electrodes and yarn electrodes. It is interesting to find that the conformal reduced graphene oxide (RGO) layer is uniformly and successively painted on the surface of SnCl2 modified polyester fibers (M‐PEF) via a repeated “dyeing and drying” strategy. The large‐area textile electrodes and ultralong yarn electrodes are fabricated by using RGO/M‐PEF as substrate with subsequent deposition of polypyrrole. This work provides new opportunities for developing high flexible textile electrodes and yarn electrodes with further increased electrochemical performance and scalable production.  相似文献   

12.
2D titanium carbides (MXene) possess significant characteristics including high conductivity and electromagnetic interference shielding efficiency (EMI SE) that are important for applications in printed and flexible electronics. However, MXene‐based ink formulations are yet to be demonstrated for proper inkjet printing of MXene patterns. Here, tandem repeat synthetic proteins based on squid ring teeth (SRT) are employed as templates of molecular self‐assembly to engineer MXene inks that can be printed as stimuli‐responsive electrodes on various substrates including cellulose paper, glass, and flexible polyethylene terephthalate (PET). MXene electrodes printed on PET substrates are able to display electrical conductivity values as high as 1080 ± 175 S cm?1, which significantly exceeds electrical conductivity values of state‐of‐the‐art inkjet‐printed electrodes composed of other 2D materials including graphene (250 S cm?1) and reduced graphene oxide (340 S cm?1). Furthermore, this high electrical conductivity is sustained under excessive bending deformation. These flexible electrodes also exhibit effective EMI SE values reaching 50 dB at films with thicknesses of 1.35 µm, which mainly originate from their high electrical conductivity and layered structure.  相似文献   

13.
Flexible biosensors are of considerable current interest for the development of portable point‐of‐care medical products, minimally invasive implantable devices, and compact diagnostic platforms. A new type of flexible electrochemical sensor fabricated by depositing high‐density Pt nanoparticles on freestanding reduced graphene oxide paper (rGOP) carrying MnO2 nanowire networks is reported. The triple‐component design offers new possibilities to integrate the mechanical and electrical properties of rGOP, the large surface area of MnO2 networks, and the catalytic activity of well‐dispersed and small‐sized Pt nanoparticles prepared via ultrasonic‐electrodeposition. The sensitivity and selectivity that the flexible electrode demonstrates for nonenzymatic detection of H2O2 enables its use for monitoring H2O2 secretion by live cells. The strategy of structurally integrating metal, metal oxide, and graphene paper will provide new insight into the design of flexible electrodes for a wide range of applications in biosensing, bioelectronics, and lab‐on‐a‐chip devices.  相似文献   

14.
We report on bending strain-induced changes of the charge carrier mobility in pentacene organic thin-film transistors employing a combined investigation of morphological, structural, and electrical properties. The observed drain current variations are reversible if the deformation is below 2%. The morphology and structure of the active pentacene layer is investigated by scanning force microscopy and specular synchrotron X-ray diffraction, which show that bending-stress causes morphological rather than structural changes, modifying essentially the lateral spacing between individual pentacene crystallites. In addition, for deformations >2% the rupture of source and drain gold electrodes is observed. In contrast to the metal electrodes, the modification of the organic layer remains reversible for deformations up to 10%, which suggests the use of soft and flexible electrodes such as graphene or conducting polymers to be beneficial for future strain sensing devices.  相似文献   

15.
Gallium‐based alloys, which are virtually non‐toxic liquid metals at room temperature, are considered highly promising electrode materials for state‐of‐the‐art electronics with new form factors. Herein, a facile and rapid method to fabricate liquid metal electrodes with highly precise patterns via a one‐step coating is presented. For this work, polymeric stencil masks with dual structures, comprising upper and lower structures for injecting and molding the liquid metal, respectively, are used for direct patterning of the liquid metal via spray deposition for few seconds, enabling the formation of complex and minute patterns including long thin lines and hollow forms. This method can be adapted to 3D substrates of various materials without any surface treatment, owing to the intrinsic adhesive and flexible properties of the polymeric masks ensuring conformal contact with non‐flat surfaces, and is also expected to be applicable to sub‐micron patterns. In addition, a number of highly flexible/stretchable electronic applications, exhibiting no change in electrical conductivity upon consecutive structural deformations, are demonstrated on various substrates including human skin. It is anticipated that these results will not only spur the further development of flexible/stretchable electronics, but also significantly contribute to the innovative on‐site fabrication of wearable electronics with high durability.  相似文献   

16.
Neural electrodes are designed to interface with the nervous system and provide control signals for neural prostheses. However, robust and reliable chronic recording and stimulation remains a challenge for neural electrodes. Here, a novel method for the fabrication of soft, low impedance, high charge density, and controlled releasing nanobiomaterials that can be used for the surface modification of neural microelectrodes to stabilize the electrode/tissue interface is reported. The fabrication process includes electrospinning of anti‐inflammatory drug‐incorporated biodegradable nanofibers, encapsulation of these nanofibers by an alginate hydrogel layer, followed by electrochemical polymerization of conducting polymers around the electrospun drug‐loaded nanofibers to form nanotubes and within the alginate hydrogel scaffold to form cloud‐like nanostructures. The three‐dimensional conducting polymer nanostructures significantly decrease the electrode impedance and increase the charge capacity density. Dexamethasone release profiles show that the alginate hydrogel coating slows down the release of the drug, significantly reducing the burst effect. These multifunctional materials are expected to be of interest for a variety of electrode/tissue interfaces in biomedical devices.  相似文献   

17.
The development of electrically conducting fibers based on known cytocompatible materials is of interest to those engaged in tissue regeneration using electrical stimulation. Herein, it is demonstrated that with the aid of rheological insights, optimized formulations of graphene containing spinnable poly(lactic‐co‐glycolic acid) (PLGA) dopes can be made possible. This helps extend the general understanding of the mechanics involved in order to deliberately translate the intrinsic superior electrical and mechanical properties of solution‐processed graphene into the design process and practical fiber architectural engineering. The as‐produced fibers are found to exhibit excellent electrical conductivity and electrochemical performance, good mechanical properties, and cellular affinity. At the highest loading of graphene (24.3 wt%), the conductivity of as‐prepared fibers is as high as 150 S m?1 (more than two orders of magnitude higher than the highest conductivity achieved for any type of nanocarbon‐PLGA composite fibers) reported previously. Moreover, the Young's modulus and tensile strength of the base fiber are enhanced 647‐ and 59‐folds, respectively, through addition of graphene.  相似文献   

18.
There is an urgent need for conductive neural interfacing materials that exhibit mechanically compliant properties, while also retaining high strength and durability under physiological conditions. Currently, implantable electrode systems designed to stimulate and record neural activity are composed of rigid materials such as crystalline silicon and noble metals. While these materials are strong and chemically stable, their intrinsic stiffness and density induce glial scarring and eventual loss of electrode function in vivo. Conductive composites, such as polymers and hydrogels, have excellent electrochemical and mechanical properties, but are electrodeposited onto rigid and dense metallic substrates. In the work described here, strong and conductive microfibers (40–50 μm diameter) wet‐spun from liquid crystalline dispersions of graphene oxide are fabricated into freestanding neural stimulation electrodes. The fibers are insulated with parylene‐C and laser‐treated, forming “brush” electrodes with diameters over 3.5 times that of the fiber shank. The fabrication method is fast, repeatable, and scalable for high‐density 3D array structures and does not require additional welding or attachment of larger electrodes to wires. The electrodes are characterized electrochemically and used to stimulate live retina in vitro. Additionally, the electrodes are coated in a water‐soluble sugar microneedle for implantation into, and subsequent recording from, visual cortex.  相似文献   

19.
High performance indium tin oxide (ITO)‐free small molecule organic solar cells and organic light‐emitting diodes (OLEDs) are demonstrated using optimized ZnO electrodes with alternative non‐metallic co‐dopants. The co‐doping of hydrogen and fluorine reduces the metal content of ZnO thin films, resulting in a low absorption coefficient, a high transmittance, and a low refractive index as well as the high conductivity, which are needed for the application in organic solar cells and OLEDs. While the established metal‐doped ZnO films have good electrical and optical properties, their application in organic devices is not as efficient as other alternative electrode approaches. The optimized ZnO electrodes presented here are employed in organic solar cells as well as OLEDs and allow not only the replacement of ITO, but also significantly improve the efficiency compared to lab‐standard ITO. The enhanced performance is attributed to outstanding optical properties and spontaneously nanostructured surfaces of the ZnO films with non‐metallic co‐dopants and their straightforward integration with molecular doping technology, which avoids several common drawbacks of ZnO electrodes. The observations show that optimized ZnO films with non‐metallic co‐dopants are a promising and competitive electrode for low‐cost and high performance organic solar cells and OLEDs.  相似文献   

20.
A graphite thin film was investigated as the drain and source electrodes for bottom‐contact organic field‐effect transistors (BC OFETs). Highly conducting electrodes (102 S cm?1) at room temperature were obtained from pyrolyzed poly(l,3,4‐oxadiazole) (PPOD) thin films that were prepatterned with a low‐cost inkjet printing method. Compared to the devices with traditional Au electrodes, the BC OFETs showed rather high performances when using these source/drain electrodes without any further modification. Being based on a graphite‐like material these electrodes possess excellent compatibility and proper energy matching with both p‐ and n‐type organic semiconductors, which results in an improved electrode/organic‐layer contact and homogeneous morphology of the organic semiconductors in the conducting channel, and finally a significant reduction of the contact resistance and enhancement of the charge‐carrier mobility of the devices is displayed. This work demonstrates that with the advantages of low‐cost, high‐performance, and printability, PPOD could serve as an excellent electrode material for BC OFETs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号