首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Through a topochemical oxidative reaction (TOR) under air, a β‐Co(OH)2 brucite type structure is converted into a monometallic CoIICoIII–CO3 layered double hydroxide (LDH). The structural and morphological characterizations are performed using powder X‐ray diffraction, Fourier‐transformed IR spectroscopy, and scanning and transmission electron microscopy. The local structure is scrutinized using an extended X‐ray absorption fine structure, X‐ray absorption near‐edge structure, and pair distribution function analysis. The chemical composition of pristine material and its derivatives (electrochemically treated) are identified by thermogravimetry analysis for the bulk and X‐ray photoelectron spectroscopy for the surface. The electrochemical behavior is investigated on deposited thin films in aqueous electrolyte (KOH) by cyclic voltammetry and electrochemical impedance spectroscopy, and their capacitive properties are further investigated by Galvanostatic cycling with potential limitation. The charge capacity is found to be as high as 1490 F g?1 for CoIICoIII–CO3 LDH at a current density of 0.5 A g?1. The performances of these materials are described using Ragone plots, which finally allow us to propose them as promising supercapacitor materials. A surface‐to‐bulk comparison using the above characterization techniques gives insight into the cyclability and reversibility limits of this material.  相似文献   

2.
2D materials are ideal for constructing flexible electrochemical energy storage devices due to their great advantages of flexibility, thinness, and transparency. Here, a simple one‐step hydrothermal process is proposed for the synthesis of nickel–cobalt phosphate 2D nanosheets, and the structural influence on the pseudocapacitive performance of the obtained nickel–cobalt phosphate is investigated via electrochemical measurement. It is found that the ultrathin nickel–cobalt phosphate 2D nanosheets with an Ni/Co ratio of 4:5 show the best electrochemical performance for energy storage, and the maximum specific capacitance up to 1132.5 F g?1. More importantly, an aqueous and solid‐state flexible electrochemical energy storage device has been assembled. The aqueous device shows a high energy density of 32.5 Wh kg?1 at a power density of 0.6 kW kg?1, and the solid‐state device shows a high energy density of 35.8 Wh kg?1 at a power density of 0.7 kW kg?1. These excellent performances confirm that the nickel–cobalt phosphate 2D nanosheets are promising materials for applications in electrochemical energy storage devices.  相似文献   

3.
Silicon‐based materials have shown great potential and been widely studied in various fields. Unlike its unparalleled theoretical capacity as anodes for batteries, few investigations have been reported on silicon‐based materials for applications in supercapacitors. Here, an electrode composed of layered silicon‐based nanosheets, obtained through oxidation and exfoliation, for a supercapacitor operated up to 4 V is reported. These silicon‐based nanosheets show an areal specific capacitance of 4.43 mF cm?2 at 10 mV s?1 while still retaining a specific capacitance of 834 µF cm?2 even at an ultrahigh scan rate of 50 000 mV s?1. The volumetric energy and power density of the supercapacitor are 7.65 mWh cm?3 and 9312 mW cm?3, respectively, and the electrode can operate for 12000 cycles in a potential window of 4 V at 2 A g?1, while retaining 90.6% capacitance. These results indicate that the silicon‐based nanosheets can be a competitive candidate as the supercapacitor electrode material.  相似文献   

4.
A low‐cost oil bath synthetic route is presented to produce uniform and highly crystalline layered cobalt hydroxide nanocones (NCs) intercalated with dodecyl sulfate anions (C12H25OSO3?, DS?). A new exfoliating procedure, by gradually unravelling/unzipping these NCs through heat treatment in formamide‐water binary solution, is developed to prepare unilamellar nanosheets. Moreover, the NCs can be readily modified with various inorganic or organic anions via a conventional anion‐exchange process at ambient temperature. The exchanged product, for example, NO3?–intercalated NCs, can be more easily and rapidly transformed into cobalt oxides (e.g., Co3O4 and CoO) than the original DS?–intercalated form while retaining a conical feature. Both the cobalt hydroxide NCs and exfoliated nanosheets are electrochemically redoxable, exhibiting a Faradaic pseudocapacitive behavior. The magnetic measurements further reveal both antiferromagnetic behaviors for transformed Co3O4 and CoO NCs. Their Néel temperature values are lower than those of bulk oxides due to finite size and geometric confinement effect. The peculiar conical feature of NCs with a hollow interior and tunable layer spacing, as well as exfoliated unilamellar nanosheets with all surface area exposed, may show promise for potential applications in electrochemical energy storage and magnetic devices.  相似文献   

5.
The dramatically increasing demand of high‐energy lithium‐ion batteries (LIBs) urgently requires advanced substitution for graphite‐based anodes. Herein, inspired from the extra capacity of lithium storage in solid‐electrolyte interface (SEI) films, layered hydroxide cobalt acetates (LHCA, Co(Ac)0.48(OH)1.52·0.55H2O) are introduced as novel and high‐efficiency anode materials. Furthermore, ultrathin LHCA nanoplates are face‐to‐face anchored on the surface of graphene nanosheets (GNS) through a facile solvothermal method to improve the electronic transport and avoid agglomeration during repeated cycles. Profiting from the parallel structure, LHCA//GNS nanosheets exhibit extraordinary long‐term and high‐rate performance. At the current densities of 1000 and 4000 mA g?1, the reversible capacities maintain ≈1050 mAh g?1 after 200 cycles and ≈780 mAh g?1 after 300 cycles, respectively, much higher than the theoretical value of LHCA according to the conversion mechanism. Fourier transform infrared spectroscopy confirms the conversion from acetate to acetaldehyde after lithiation. A reasonable mechanism is proposed to elucidate the lithium storage behaviors referring to the electrocatalytic conversion of OH groups with Co nanocatalysts. This work can help further understand the contribution of SEI components (especially LiOH and LiAc) to lithium storage. It is envisaged that layered transition metal hydroxides can be used as advanced materials for energy storage devices.  相似文献   

6.
7.
The monolithic electrodes with high volumetric capacitance demonstrate a great potential in practical industrial applications for supercapacitors. Herein, a novel strategy for ultrafast self‐assembly of graphene oxides (GO)‐induced monolithic NiCo–carbonate hydroxide (NiCo–CH) nanowire composite films (G–CH) is reported. The oxygen‐containing functional groups on the GO surface help effectively to induce formation of the monodisperse NiCo–CH nanowires. Such a nanowire‐shaped structure further functions as a scaffold and/or support, leading to 25 s of ultrafast self‐assembly for G–CH composite films and a relatively loose and open channel that contributes to fast electrolyte transport. The as‐obtained monolithic G–CH architectures show an excellent supercapacitor performance as binder‐ and conductive agent‐free electrode, evidenced by a superior volumetric capacitance of 2936 F cm?3 and good electrochemical stability. Combining highly conductive carbon nanotubes (CNTs) into the monolithic composite films can further create well‐interconnected conductive networks within the electrode matrix, thus to improve the reaction kinetics and rate capability. The present strategy that can modulate the growth of the high‐electroactive pseudocapacitive hydroxides and achieve an ultrafast self‐assembly of monolithic composites may pave a promising new way for development of high‐performance supercapacitors and shed a new light on the configuration of carbon‐based electrode materials in energy storage and conversion devices.  相似文献   

8.
Sodium‐ion hybrid supercapacitors (Na‐HSCs) have potential for mid‐ to large‐scale energy storage applications because of their high energy/power densities, long cycle life, and the low cost of sodium. However, one of the obstacles to developing Na‐HSCs is the imbalance of kinetics from different charge storage mechanisms between the sluggish faradaic anode and the rapid non‐faradaic capacitive cathode. Thus, to develop high‐power Na‐HSC anode materials, this paper presents the facile synthesis of nanocomposites comprising Nb2O5@Carbon core–shell nanoparticles (Nb2O5@C NPs) and reduced graphene oxide (rGO), and an analysis of their electrochemical performance with respect to various weight ratios of Nb2O5@C NPs to rGO (e.g., Nb2O5@C, Nb2O5@C/rGO‐70, ‐50, and ‐30). In a Na half‐cell configuration, the Nb2O5@C/rGO‐50 shows highly reversible capacity of ≈285 mA h g?1 at 0.025 A g?1 in the potential range of 0.01–3.0 V (vs Na/Na+). In addition, the Na‐HSC using the Nb2O5@C/rGO‐50 anode and activated carbon (MSP‐20) cathode delivers high energy/power densities (≈76 W h kg?1 and ≈20 800 W kg?1) with a stable cycle life in the potential range of 1.0–4.3 V. The energy and power densities of the Na‐HSC developed in this study are higher than those of similar Li‐ and Na‐HSCs previously reported.  相似文献   

9.
Planar integrated systems of micro‐supercapacitors (MSCs) and sensors are of profound importance for 3C electronics, but usually appear poor in compatibility due to the complex connections of device units with multiple mono‐functional materials. Herein, 2D hierarchical ordered dual‐mesoporous polypyrrole/graphene (DM‐PG) nanosheets are developed as bi‐functional active materials for a novel prototype planar integrated system of MSC and NH3 sensor. Owing to effective coupling of conductive graphene and high‐sensitive pseudocapacitive polypyrrole, well‐defined dual‐mesopores of ≈7 and ≈18 nm, hierarchical mesoporous network, and large surface area of 112 m2 g?1, the resultant DM‐PG nanosheets exhibit extraordinary sensing response to NH3 as low as 200 ppb, exceptional selectivity toward NH3 that is much higher than other volatile organic compounds, and outstanding capacitance of 376 F g?1 at 1 mV s?1 for supercapacitors, simultaneously surpassing single‐mesoporous and non‐mesoporous counterparts. Importantly, the bi‐functional DM‐PG‐based MSC‐sensor integrated system represents rapid and stable response exposed to 10–40 ppm of NH3 after only charging for 100 s, remarkable sensitivity of NH3 detection that is close to DM‐PG‐based MSC‐free sensor, impressive flexibility with ≈82% of initial response value even at 180°, and enhanced overall compatibility, thereby holding great promise for ultrathin, miniaturized, body‐attachable, and portable detection of NH3.  相似文献   

10.
A novel flexible hybrid battery–supercapacitor device is proposed consisting of high specific surface area electrodes paired with an electrolyte, which contains a redox species that can exist in more than two oxidation states. The two initially equal half‐cells of the device consist of a reduced graphene oxide hydrogel which encapsulates vanadium ions, synthesized with a single‐step method. During charge, the oxidation state of the vanadium ions changes, resulting in two half‐cells with different potentials which considerably increases the energy density. The achieved maximum capacity of more than 225 mAh g?1 is roughly eight times higher than that of comparable graphene hydrogel supercapacitors without vanadium content, but the potentiostatic charging time is only double. Operated as a supercapacitor, it retains 95% of the initial capacitance over 1000 cycles. As battery, the losses are more significant, retaining around 50% of the initial capacity. However, these losses during battery operation can be almost entirely restored by electric measures. The vanadium ion addition also improves the self‐discharge characteristics of the device. Moreover, the self‐discharge does not permanently damage the hybrid device since both half‐cells initially consist of the same vanadium graphene hydrogel and discharging resets it to initial conditions.  相似文献   

11.
12.
13.
A hierarchical structure consisting of Ni–Co hydroxide nanopetals (NCHPs) grown on a thin free‐standing graphene petal foam (GPF) has been designed and fabricated by a two‐step process for pseudocapacitive electrode applications. The mechanical behavior of GPFs has been, for the first time to our knowledge, quantitatively measured from in situ scanning electron microscope characterization of the petal foams during in‐plane compression and bending processes. The Young's modulus of a typical GPF is 3.42 GPa, indicating its outstanding mechanical robustness as a nanotemplate. The GPF/NCHP electrodes exhibit volumetric capacitances as high as 765 F cm?3, equivalent to an areal capacitance of 15.3 F cm?2 and high rate capability. To assess practical functionality, two‐terminal asymmetric solid‐state supercapacitors with 3D GPF/NCHPs as positive electrodes are fabricated and shown to exhibit outstanding energy and power densities, with maximum average energy density of ≈10 mWh cm?3 and maximum power density of ≈3 W cm?3, high rate capability (a capacitance retention of ≈60% at 100 mA cm?2), and excellent long‐term cyclic stability (full capacitance retention over 15 000 cycles).  相似文献   

14.
A novel hierarchical nanotube array (NTA) with a massive layered top and discretely separated nanotubes in a core–shell structure, that is, nickel–cobalt metallic core and nickel–cobalt layered double hydroxide shell (Ni?Co@Ni?Co LDH), is grown on carbon fiber cloth (CFC) by template‐assisted electrodeposition for high‐performance supercapacitor application. The synthesized Ni?Co@Ni?Co LDH NTAs/CFC shows high capacitance of 2200 F g?1 at a current density of 5 A g?1, while 98.8% of its initial capacitance is retained after 5000 cycles. When the current density is increased from 1 to 20 A g?1, the capacitance loss is less than 20%, demonstrating excellent rate capability. A highly flexible all‐solid‐state battery‐type supercapacitor is successfully fabricated with Ni?Co LDH NTAs/CFC as the positive electrode and electrospun carbon fibers/CFC as the negative electrode, showing a maximum specific capacitance of 319 F g?1, a high energy density of 100 W h kg?1 at 1.5 kW kg?1, and good cycling stability (98.6% after 3000 cycles). These fascinating electrochemical properties are resulted from the novel structure of electrode materials and synergistic contributions from the two electrodes, showing great potential for energy storage applications.  相似文献   

15.
Transition metal nitrides (TMNs) are considered as potential electrode materials for high-performance energy storage devices. However, the structural instability during the electrochemical reaction process severely hinders their wide application. A general strategy to overcome this obstacle is to fabricate nanocomposite TMNs on the conducting substrate. Herein, the honeycomb-like CoN-Ni3N/N-C nanosheets are in situ grown on a flexible carbon cloth (CC) via a mild solvothermal method with post-nitrogenizing treatment. As an integrated electrode for the supercapacitor, the optimized CoN-Ni3N/N-C/CC achieves remarkable electrochemical performance due to the enhanced intrinsic conductivity and increased concentration of the active sites. In particular, the flexible quasi-solid-state asymmetric supercapacitor assembled with CoN-Ni3N/N-C/CC cathode and VN/CC anode delivers an excellent energy density of 106 μWh cm−2, maximum power density of 40 mW cm−2, along with an outstanding cycle stability. This study provides a neoteric perspective on construction of high-performance flexible energy storage devices with novel metallic nitrides.  相似文献   

16.
Chloride ion batteries (CIBs) are regarded as promising energy storage systems due to their large theoretical volumetric energy density, high abundance, and low cost of chloride resources. Herein, the synthesis of CoFe layered double hydroxide in the chloride form (CoFe–Cl LDH), for use as a new cathode material for CIBs, is demonstrated for the first time. The CoFe–Cl LDH exhibits a maximum capacity of 239.3 mAh g?1 and a high reversible capacity of ≈160 mAh g?1 over 100 cycles. The superb Cl? ion storage of CoFe–Cl LDH is attributed to its unique topochemical transformation property during the charge/discharge process: a reversible intercalation/deintercalation of Cl? ions in cathode with slight expansion/contraction of basal spacing, accompanied by chemical state changes in Co2+/Co3+ and Fe2+/Fe3+ couples. First‐principles calculations reveal that CoFe–Cl LDH is an excellent Cl? ion conductor, with extremely low energy barriers (0.12?0.25 eV) for Cl? diffusion. This work opens a new avenue for LDH materials as promising cathodes for anion‐type rechargeable batteries, which are regarded as formidable competitors to traditional metal ion‐shuttling batteries.  相似文献   

17.
A switchable dry adhesive based on a nickel–titanium (NiTi) shape‐memory alloy with an adhesive silicone rubber surface has been developed. Although several studies investigate micropatterned, bioinspired adhesive surfaces, very few focus on reversible adhesion. The system here is based on the indentation‐induced two‐way shape‐memory effect in NiTi alloys. NiTi is trained by mechanical deformation through indentation and grinding to elicit a temperature‐induced switchable topography with protrusions at high temperature and a flat surface at low temperature. The trained surfaces are coated with either a smooth or a patterned adhesive polydimethylsiloxane (PDMS) layer, resulting in a temperature‐induced switchable surface, used for dry adhesion. Adhesion tests show that the temperature‐induced topographical change of the NiTi influences the adhesive performance of the hybrid system. For samples with a smooth PDMS layer the transition from flat to structured state reduces adhesion by 56%, and for samples with a micropatterned PDMS layer adhesion is switchable by nearly 100%. Both hybrid systems reveal strong reversibility related to the NiTi martensitic phase transformation, allowing repeated switching between an adhesive and a nonadhesive state. These effects have been discussed in terms of reversible changes in contact area and varying tilt angles of the pillars with respect to the substrate surface.  相似文献   

18.
New porous materials are of great importance in many technological applications. Here, the direct synthesis of multi‐layer graphene and porous carbon woven composite films by chemical vapor deposition on Ni gauze templates is reported. The composite films integrate the dual advantages of graphene and porous carbon, having not only the excellent electrical properties and flexibility of graphene but also the porous characteristics of amorphous carbon. The multi‐layer graphene/porous carbon woven fabric film creates a new platform for a variety of applications, such as fiber supercapacitors. The designed composite film has a capacitance of 20 μF/cm2, which is close to the theoretical value and a device areal capacitance of 44 mF/cm2.  相似文献   

19.
Colloidal solutions of layered rare‐earth hydroxide nanosheets provide a simple route to deposit ultra thin luminescence films. The antireflection and antifogging properties were integrated into transparent luminescent films by the layer‐by‐layer assembly of Eu3+, Tb3+, Dy3+ doped‐hydroxocation nanosheets and negatively‐charged SiO2 nanoparticles. Resulting multifunctional films exhibited efficient red, green, and blue emissions with controllable intensity. Highly improved transmittance enabled us to display combinatorial color luminescence, which can be achieved by multiply overlapping individual films with different combinations, without significant loss of transparency. Triple overlap of red/green/blue films generated an excellent white‐light under 254 nm UV irradiation.  相似文献   

20.
Water oxidation is a critical process for electrochemical water splitting due to its inherent sluggish kinetics. In spite of the high catalytic activities of noble metal-based electrocatalysts for water oxidation, their high cost, rare reserves, and low stabilities drive researchers to exploit efficient but low-cost electrocatalysts. Ultrathin 2D nanomaterials are considered efficient electrocatalysts for oxygen evolution reaction (OER) in water splitting. Herein, a facile strategy is proposed to fabricate 2D FeNi layered double hydroxide (FeNi-LDH) nanosheets packed with the in situ produced 1D sword-like FeNi-MOFs by using FeNi-LDH as a semi-sacrificial template. In the composite, the thickness of the formed nanosheets is only 1.34 nm, much thinner than that of most previously reported 2D materials. The 1D porous sword-like MOF nanorods have a long length of around 1.3 µm. Due to the unique 2D/1D combined structure, the as-prepared FeNi LDH/MOF is directly used as electrocatalyst for the OER displays enhanced OER electrocatalytic performance with a low overpotential of 272 mV@100 mA cm–2, a small Tafel slope of 34.1 mV dec–1, high long-term durability. This work provides a new way to fabricate integrated ultrathin 2D nanosheets and MOFs as advanced catalysts for electrochemical energy conversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号