首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, Ni0.85Se nanosheets array electrode material was prepared with carbon fiber cloth (CFC) as a substrate. Owing to their special structure, the Ni0.85Se nanosheets array exhibits an outstanding energy storage property with a superior specific capacitance (820 F/g) and great rate capability (83.17%). Moreover, the Ni0.85Se electrode presents an great cycling performance with 82.63% retention after 10,000 cycles. The asymmetric supercapacitor (ASC) was fabricated based on Ni0.85Se positive and activated carbon (AC) negative electrode materials, with KOH/PVA gel as the electrolyte, respectively. A highest energy density of 29 W h kg?1 was achieved at a power density of 779 W kg?1 under the optimal potential range of 1.6 V. Furthermore, the Ni0.85Se//AC ASC devices demonstrate a great cycling performance of 81.25% capacitance retention after 5000 charge–discharge cycles. These excellent performance provide strong evidence to confirm the conclusion that Ni0.85Se nanosheets array used as electrode materials in supercapacitors and Ni0.85Se//AC asymmetric supercapacitors hold significant potential in the field of energy storage.  相似文献   

2.
Asymmetric supercapacitor with high energy density has been developed successfully using graphene/MnO2 composite as positive electrode and activated carbon nanofibers (ACN) as negative electrode in a neutral aqueous Na2SO4 electrolyte. Due to the high capacitances and excellent rate performances of graphene/MnO2 and ACN, as well as the synergistic effects of the two electrodes, such asymmetric cell exhibits superior electrochemical performances. An optimized asymmetric supercapacitor can be cycled reversibly in the voltage range of 0–1.8 V, and exhibits maximum energy density of 51.1 Wh kg?1, which is much higher than that of MnO2//DWNT cell (29.1 Wh kg?1). Additionally, graphene/MnO2//ACN asymmetric supercapacitor exhibits excellent cycling durability, with 97% specific capacitance retained even after 1000 cycles. These encouraging results show great potential in developing energy storage devices with high energy and power densities for practical applications.  相似文献   

3.
For building high‐energy density asymmetric supercapacitors, developing anode materials with large specific capacitance remains a great challenge. Although Fe2O3 has been considered as a promising anode material for asymmetric supercapacitors, the specific capacitance of the Fe2O3‐based anodes is still low and cannot match that of cathodes in the full cells. In this work, a composite material with well dispersed Fe2O3 quantum dots (QDs, ≈2 nm) decorated on functionalized graphene‐sheets (FGS) is prepared by a facile and scalable method. The Fe2O3 QDs/FGS composites exhibit a large specific capacitance up to 347 F g?1 in 1 m Na2SO4 between –1 and 0 V versus Ag/AgCl. An asymmetric supercapacitor operating at 2 V is fabricated using Fe2O3/FGS as anode and MnO2/FGS as cathode in 1 m Na2SO4 aqueous electrolyte. The Fe2O3/FGS//MnO2/FGS asymmetric supercapacitor shows a high energy density of 50.7 Wh kg?1 at a power density of 100 W kg?1 as well as excellent cycling stability and power capability. The facile synthesis method and superior supercapacitive performance of the Fe2O3 QDs/FGS composites make them promising as anode materials for high‐performance asymmetric supercapacitors.  相似文献   

4.
Graphene quantum dots (GQDs) have attracted tremendous research interest due to the unique properties associated with both graphene and quantum dots. Here, a new application of GQDs as ideal electrode materials for supercapacitors is reported. To this end, a GQDs//GQDs symmetric micro‐supercapacitor is prepared using a simple electro‐deposition approach, and its electrochemical properties in aqueous electrolyte and ionic liquid electrolyte are systematically investigated. The results show that the as‐made GQDs micro‐supercapacitor has superior rate capability up to 1000 V s?1, excellent power response with very short relaxation time constant (τ0 = 103.6 μs in aqueous electrolyte and τ0 = 53.8 μs in ionic liquid electrolyte), and excellent cycle stability. Additionally, another GQDs//MnO2 asymmetric supercapacitor is also built using MnO2 nanoneedles as the positive electrode and GQDs as the negative electrode in aqueous electrolyte. Its specific capacitance and energy density are both two times higher than those of GQDs//GQDs symmetric micro‐supercapacitor in the same electrolyte. The results presented here may pave the way for a new promising application of GQDs in micropower suppliers and microenergy storage devices.  相似文献   

5.
Layered double hydroxides (LDHs) are promising supercapacitor electrode materials due to their high specific capacitances. However, their electrochemical performances such as rate performance and energy density at a high current density, are rather poor. Accordingly, a facile strategy is demonstrated for the synthesis of the integrated porous Co–Al hydroxide nanosheets (named as GSP‐LDH) with dual support system using dodecyl sulfate anions and graphene sheets as structural and conductive supports, respectively. Owing to fast ion/electron transport, porous and integrated structure, the GSP‐LDH electrode exhibits remarkably improved electrochemical characteristics such as high specific capacitance (1043 F g?1 at 1 A g?1) and ultra‐high rate performance capability (912 F g?1 at 20 A g?1). Moreover, the assembled sandwiched graphene/porous carbon (SGC)//GSP‐LDH asymmetric supercapacitor delivers a high energy density up to 20.4 Wh kg?1 at a very high power density of 9.3 kW kg?1, higher than those of previously reported asymmetric supercapacitors. The strategy provides a facile and effective method to achieve high rate performance LDH based electrode materials for supercapacitors.  相似文献   

6.
Manganese dioxide (MnO2) materials have received much attention as promising pseudocapacitive materials owing to their high theoretical capacitance and natural abundance. Unfortunately, the charge storage performance of MnO2 is usually limited to commercially available mass loading electrodes because of the significantly lower electron and ion migration kinetics in thick electrodes. Here, an alternatively assembled 2D layered material consisting of exfoliated MnO2 nanosheets and nitrogen-doped carbon layers for ultrahigh-mass-loading supercapacitors without sacrificing energy storage performance is reported. Layered birnessite-type MnO2 is efficiently exfoliated and intercalated by a carbon precursor of dopamine using a fluid dynamic-induced process, resulting in MnO2/nitrogen-doped carbon (MnO2/C) materials after self-polymerization and carbonization. The alternatively stacked and interlayer-expanded structure of MnO2/C enables fast and efficient electron and ion transfer in a thick electrode. The resulting MnO2/C electrode shows outstanding electrochemical performance at an ultrahigh mass loading of 19.7 mg cm−2, high gravimetric and areal capacitances of 480.3 F g−1 and 9.4 F cm−2 at 0.5 mA cm−2, and rapid charge/discharge capability of 70% capacitance retention at 40 mA cm−2. Furthermore, asymmetric supercapacitor based on high-mass-loading MnO2/C can deliver an extremely high energy of 64.2 Wh kg−1 at a power density of 18.8 W kg−1 in an aqueous electrolyte.  相似文献   

7.
Nickel oxide (NiO) nanoparticles are distributed uniformly in the vertically aligned carbon nanotube arrays (VACNTs) with millimeter thickness by an effective supercritical carbon dioxide‐assisted method. The as‐prepared VACNT/NiO hybrid structures are used as electrodes without binders and conducting additives for supercapacitor applications. Due to the synergetic effects of NiO and VACNTs with nanoporous structures and parallel 1D conductive paths for electrons, the supercapacitors exhibit a high capacitance of 1088.44 F g?1. Furthermore, an asymmetric supercapacitor is assembled using the as‐synthesized VACNTs/NiO hybrids as the positive electrode and the VACNTs as the negative electrode. Remarkably, the energy density of the asymmetric supercapacitor is as high as 90.9 Wh kg?1 at 3.2 kW kg?1 and the maximum power density reaches 25.6 kW kg?1 at 24.9 Wh kg?1, which are superior to those of the NiO or VACNTs‐based asymmetric supercapacitors. More importantly, the asymmetric supercapacitors exhibit capacitance retention of 87.1% after 2000 cycles at 5 A g?1. The work provides a novel approach in decorating highly dense and long VACNTs with active materials, which are promising electrodes for supercapacitors with ultrahigh power density and energy density.  相似文献   

8.
The demand for advanced energy storage devices such as supercapacitors and lithium‐ion batteries has been increasing to meet the application requirements of hybrid vehicles and renewable energy systems. A major limitation of state‐of‐art supercapacitors lies in their relatively low energy density compared with lithium batteries although they have superior power density and cycle life. Here, we report an additive‐free, nano‐architectured nickel hydroxide/carbon nanotube (Ni(OH)2/CNT) electrode for high energy density supercapacitors prepared by a facile two‐step fabrication method. This Ni(OH)2/CNT electrode consists of a thick layer of conformable Ni(OH)2 nano‐flakes on CNT bundles directly grown on Ni foams (NFs) with a very high areal mass loading of 4.85 mg cm?2 for Ni(OH)2. Our Ni(OH)2/CNT/NF electrode demonstrates the highest specific capacitance of 3300 F g?1 and highest areal capacitance of 16 F cm?2, to the best of our knowledge. An asymmetric supercapacitor using the Ni(OH)2/CNT/NF electrode as the anode assembled with an activated carbon (AC) cathode can achieve a high cell voltage of 1.8 V and an energy density up to 50.6 Wh/kg, over 10 times higher than that of traditional electrochemical double‐layer capacitors (EDLCs).  相似文献   

9.
2D MXene materials are of considerable interest for future energy storage. A MXene film could be used as an effective flexible supercapacitor electrode due to its flexibility and, more importantly, its high specific capacitance. However, although it has excellent electronic conductivity, sluggish ionic kinetics within the MXene film becomes a fundamental limitation to the electrochemical performance. To compensate for the relative deficiency, MXene films are frequently reduced to several micrometer dimensions with low mass loading (<1 mg cm?2), to the point of detriment of areal performance and commercial value. Herein, for the first time, the design of a 3D porous MXene/bacterial cellulose (BC) self‐supporting film is reported for ultrahigh capacitance performance (416 F g?1, 2084 mF cm?2) with outstanding mechanical properties and high flexibility, even when the MXene loading reaches 5 mg cm?2. The highly interconnected MXene/BC network enables both excellent electron and ion transport channel. Additionally, a maximum energy density of 252 µWh cm?2 is achieved in an asymmetric supercapacitor, higher than that of all ever‐reported MXene‐based supercapacitors. This work exploits a simple route for assembling 2D MXene materials into 3D porous films as state‐of‐the‐art electrodes for high performance energy storage devices.  相似文献   

10.
Layered H2Ti6O13‐nanowires are prepared using a facile hydrothermal method and their Li‐storage behavior is investigated in non‐aqueous electrolyte. The achieved results demonstrate the pseudocapacitive characteristic of Li‐storage in the layered H2Ti6O13‐nanowires, which is because of the typical nanosize and expanded interlayer space. The as‐prepared H2Ti6O13‐nanowires have a high capacitance of 828 F g?1 within the potential window from 2.0 to 1.0 V (vs. Li/Li+). An asymmetric supercapacitor with high energy density is developed successfully using H2Ti6O13‐nanowires as a negative electrode and ordered mesoporous carbon (CMK‐3) as a positive electrode in organic electrolyte. The asymmetric supercapacitor can be cycled reversibly in the voltage range of 1 to 3.5 V and exhibits maximum energy density of 90 Wh kg?1, which is calculated based on the mass of electrode active materials. This achieved energy density is much higher than previous reports. Additionally, H2Ti6O13//CMK‐3 asymmetric supercapacitor displays the highest average power density of 11 000 W kg?1. These results indicate that the H2Ti6O13//CMK‐3 asymmetric supercapacitor should be a promising device for fast energy storage.  相似文献   

11.
Graphene derivatives are promising candidates as electrode materials in supercapacitor cells, therefore, functionalization strategies are pursued to improve their performance. A scalable approach is reported for preparing a covalently and homogenously functionalized graphene with iron tetraaminophthalocyanine (FePc‐NH2) with a high degree of functionalization. This is achieved by exploiting fluorographene's reactivity with the diethyl bromomalonate, producing graphene‐dicarboxylic acid after hydrolysis, which is conjugated with FePc‐NH2. The material exhibits an ultrahigh gravimetric specific capacitance of 960 F g?1 at 1 A g?1 and zero losses upon charging–discharging cycling. The energy density of 59 Wh kg?1 is eminent among supercapacitors operating in aqueous electrolytes with graphene‐based electrode materials. This is attributed to the structural and functional synergy of the covalently bound components, giving rise to a zwitterionic surface with extensive π–π stacking, but not graphene restacking, all being very beneficial for charge and ionic transport. The safety of the proposed system, owing to the benign Na2SO4 aqueous electrolyte, the high capacitance, energy density, and potential of preparing the electrode material on a large‐scale and at low cost make the reported strategy very attractive for development of supercapacitors based on the covalent attachment of suitable molecules onto graphene toward high‐synergy hybrids.  相似文献   

12.
A flexible solid‐state asymmetric supercapacitor based on bendable film electrodes with 3D expressway‐like architecture of graphenes and “hard nano‐spacer” is fabricated via an extended filtration assisted method. In the designed structure of the positive electrode, graphene sheets are densely packed, and Ni(OH)2 nanoplates are intercalated in between the densely stacked graphenes. The 3D expressway‐like electrodes exhibit superior supercapacitive performance including high gravimetric capacitance (≈573 F g‐1), high volumetric capacitance (≈655 F cm‐3), excellent rate capability, and superior cycling stability. In addition, another hybrid film of graphene and carbon nanotubes (CNT) is fabricated as the negative electrodes for the designed asymmetric device. In the obtained graphene@CNT films, CNTs served as the hard spacer to prevent restacking of graphene sheets but also as a conductive and robust network to facilitate the electrons collection/transport in order to fulfill the demand of high‐rate performance of the asymmetric supercapacitor. Based on these two hybrid electrode films, a solid‐state flexible asymmetric supercapacitor device is assembled, which is able to deliver competitive volumetric capacitance of 58.5 F cm‐3 and good rate capacity. There is no obvious degradation of the supercapacitor performance when the device is in bending configuration, suggesting the excellent flexibility of the device.  相似文献   

13.
Freestanding carbon‐based hybrids, specifically carbon nanotube@3D graphene (CNTs@3DG) hybrid, are of great interest in electrochemical energy storage. However, the large holes (about 400 µm) in the commonly used 3D graphene foams (3DGF) constitute as high as 90% of the electrode volume, resulting in a very low loading of electroactive materials that is electrically connected to the carbon, which makes it difficult for flexible supercapacitors to achieve high gravimetric and volumetric energy density. Here, a hierarchically porous carbon hybrid is fabricated by growing 1D CNTs on 3D graphene aerogel (CNTs@3DGA) using a facile one‐step chemical vapor deposition process. In this architecture, the 3DGA with ample interconnected micrometer‐sized pores (about 5 µm) dramatically enhances mass loading of electroactive materials comparing with 3DGF. An optimized all‐solid‐state asymmetric supercapacitor (AASC) based on MnO2@CNTs@3DGA and Ppy@CNTs@3DGA electrodes exhibits high volumetric energy density of 3.85 mW h cm?3 and superior long‐term cycle stability with 84.6% retention after 20 000 cycles, which are among the best reported for AASCs with both electrodes made of pseudocapacitive electroactive materials.  相似文献   

14.
Asymmetric supercapacitors with high energy density are fabricated using a self‐assembled reduced graphene oxide (RGO)/MnO2 (GrMnO2) composite as a positive electrode and a RGO/MoO3 (GrMoO3) composite as a negative electrode in safe aqueous Na2SO4 electrolyte. The operation voltage is maximized by choosing two metal oxides with the largest work function difference. Because of the synergistic effects of highly conductive graphene and highly pseudocapacitive metal oxides, the hybrid nanostructure electrodes exhibit better charge transport and cycling stability. The operation voltage is expanded to 2.0 V in spite of the use of aqueous electrolyte, revealing a high energy density of 42.6 Wh kg?1 at a power density of 276 W kg?1 and a maximum specific capacitance of 307 F g?1, consequently giving rise to an excellent Ragone plot. In addition, the GrMnO2//GrMoO3 supercapacitor exhibits improved capacitance with cycling up to 1000 cycles, which is explained by the development of micropore structures during the repetition of ion transfer. This strategy for the choice of metal oxides provides a promising route for next‐generation supercapacitors with high energy and high power densities.  相似文献   

15.
Well‐controlled core–shell hierarchical nanostructures based on oxyfluoride and hydroxide are for the first time rationally designed and synthesized via a simple solvothermal and chemical precipitation route, in which FeOF nanorod acts as core and porous Ni(OH)2 nanosheets as shell. When evaluated as electrodes for supercapacitors, a high specific capacitance of 1452 F g?1 can be obtained at a current density of 1 A g?1. Even as the current density increases to 10 A g?1, the core–shell hybrid still reserves a noticeable capacitance of 1060 F g?1, showing an excellent rate capacity. Furthermore, all‐solid‐state flexible asymmetric supercapacitor based on the FeOF/Ni(OH)2 hybrid as a positive electrode and activated carbon as a negative electrode shows high power density, high energy density, and long cycling lifespan. The excellent electrochemical performance of the FeOF/Ni(OH)2 core–shell hybrid is ascribed to the unique microstructure and synergistic effects. FeOF nanorod from FeF3 by partial substitution of fluorine with oxygen behaves as a low intrinsic resistance, thus facilitating charge transfer processes. While the hierarchical Ni(OH)2 nanosheets with large surface area provide enough active sites for redox chemical reactions, leading to greatly enhanced electrochemical activity. The well‐controllable oxyfluoride/hydroxide hybrid is inspiring, opening up a new way to design new electrodes for next‐generation all‐solid‐state supercapacitors.  相似文献   

16.
Hierarchical flowerlike nickel hydroxide decorated on graphene sheets has been prepared by a facile and cost‐effective microwave‐assisted method. In order to achieve high energy and power densities, a high‐voltage asymmetric supercapacitor is successfully fabricated using Ni(OH)2/graphene and porous graphene as the positive and negative electrodes, respectively. Because of their unique structure, both of these materials exhibit excellent electrochemical performances. The optimized asymmetric supercapacitor could be cycled reversibly in the high‐voltage region of 0–1.6 V and displays intriguing performances with a maximum specific capacitance of 218.4 F g?1 and high energy density of 77.8 Wh kg?1. Furthermore, the Ni(OH)2/graphene//porous graphene supercapacitor device exhibits an excellent long cycle life along with 94.3% specific capacitance retained after 3000 cycles. These fascinating performances can be attributed to the high capacitance and the positive synergistic effects of the two electrodes. The impressive results presented here may pave the way for promising applications in high energy density storage systems.  相似文献   

17.
Flexible supercapacitors with high power density, flexibility, and durability have shown enormous potential for smart electronics. Here, a continuous graphitic carbon nitride polyhedron assembly for flexible supercapacitor that is prepared by pyrolysis of carbon nanotubes wired zeolitic imidazolate framework‐8 (ZIF‐8) composites under nitrogen is reported. It exhibits a high specific capacitance of 426 F g?1 at current density of 1 A g?1 in 1 m H2SO4 and excellent stability over 10 000 cycles. The remarkable performance results from the continuous hierarchical structure with average pore size of 2.5 nm, high nitrogen‐doping level (17.82%), and large specific surface area (920 m2 g?1). Furthermore, a flexible supercapacitor is developed by constructing the assembly with interpenetrating polymer network electrolyte. Stemming from the synergistic effect of high‐performance electrode and highly ion‐conductive electrolyte, superior energy density of 59.40 Wh kg?1 at 1 A g?1 is achieved. The device maintains a stable energy supply under cyclic deformations, showing wide application in flexible and even wearable conditions. The work paves a new way for designing pliable electrode with excellent electronic and mechanic property for long‐lived flexible energy storage devices.  相似文献   

18.
3D printing graphene aerogel with periodic microlattices has great prospects for various practical applications due to their low density, large surface area, high porosity, excellent electrical conductivity, good elasticity, and designed lattice structures. However, the low specific capacitance limits their development in energy storage fields due to the stacking of graphene. Therefore, constructing a graphene‐based 2D materials hybridization aerogel that consists of the pseduocapacitive substance and graphene material is necessary for enhancing electrochemical performance. Herein, 3D printing periodic graphene‐based composite hybrid aerogel microlattices (HAMs) are reported via 3D printing direct ink writing technology. The rich porous structure, high electrical conductivity, and highly interconnected networks of the HAMs aid electron and ion transport, further enabling excellent capacitive performance for supercapacitors. An asymmetric supercapacitor device is assembled by two different 4‐mm‐thick electrodes, which can yield high gravimetric specific capacitance (Cg) of 149.71 F g?1 at a current density of 0.5 A g?1 and gravimetric energy density (Eg) of 52.64 Wh kg?1, and retains a capacitance retention of 95.5% after 10 000 cycles. This work provides a general strategy for designing the graphene‐based mixed‐dimensional hybrid architectures, which can be utilized in energy storage fields.  相似文献   

19.
Oriented microstructures are widely found in various biological systems for multiple functions. Such anisotropic structures provide low tortuosity and sufficient surface area, desirable for the design of high‐performance energy storage devices. Despite significant efforts to develop supercapacitors with aligned morphology, challenges remain due to the predefined pore sizes, limited mechanical flexibility, and low mass loading. Herein, a wood‐inspired flexible all‐solid‐state hydrogel supercapacitor is demonstrated by morphologically tuning the aligned hydrogel matrix toward high electrode‐materials loading and high areal capacitance. The highly aligned matrix exhibits broad morphological tunability (47–12 µm), mechanical flexibility (0°–180° bending), and uniform polypyrrole loading up to 7 mm thick matrix. After being assembled into a solid‐state supercapacitor, the areal capacitance reaches 831 mF cm?2 for the 12 µm matrix, which is 259% times of the 47 µm matrix and 403% times of nonaligned matrix. The supercapacitor also exhibits a high energy density of 73.8 µWh cm?2, power density of 4960 µW cm?2, capacitance retention of 86.5% after 1000 cycles, and bending stability of 95% after 5000 cycles. The principle to structurally design the oriented matrices for high electrode material loading opens up the possibility for advanced energy storage applications.  相似文献   

20.
Hybrid supercapacitors use electric double-layer capacitance and Faradaic pseudocapacitance as energy storage mechanisms. This type of supercapacitor is becoming a prime candidate for next-generation energy storage devices, with advantages in terms of energy density, specific capacitance, and life cycle. However, reducing the electrode area and increasing the specific capacitance of hybrid supercapacitors remain challenging. In this study, a MoCl5 Precursor-assisted Ultrafast Laser Carbonization (MPAULC) method to fabricate symmetric hybrid supercapacitors with improved capacitance and reduced size is proposed. The method uses an ultrafast laser to induce the formation of carbon/MoO3 composite with the assistance of the MoCl5 precursor. This ultrafast laser carbonization method exhibited high processing precision. The role of the precursor in laser processing is studied using time-resolved imaging and temperature calculations. The specific area capacitance of the C/MoO3 hybrid supercapacitor is 11.85 mF cm−2, 9.2 times higher than that of the laser-induced carbon supercapacitor without precursor. The MPAULC method provides a reliable pathway for fabricating miniaturized hybrid supercapacitors with carbon/metal oxide composite electrodes on polymer substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号