首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photo‐induced charge transfer and the dynamics of persistent charge carriers in blends of semiconducting polymers and nanocrystals are investigated. Regioregular poly(3‐hexylthiophene) (P3HT) is used as the electron donor material, while the acceptor moiety is established by CdSe nanocrystals (nc‐CdSe) prepared via colloidal synthesis. As a reference system, organic blends of P3HT and [6,6]‐phenyl C61‐butyric acid methyl ester (PCBM) are studied as well. The light‐induced charge transfer between P3HT and the acceptor materials is studied by photoluminescence (PL), photo‐induced absorption (PIA) and light‐induced electron spin resonance spectroscopy (LESR). Compared to neat P3HT samples, both systems show an intensified formation of polarons in the polymer upon photo‐excitation, pointing out successful separation of photogenerated charge carriers. Additionally, relaxation of the persistent charge carriers is investigated, and significant differences are found between the hybrid composite and the purely organic system. While relaxation, reflected in the transient signal decay of the polaron signal, is fast in the organic system, the hybrid blends exhibit long‐term persistence. The appearance of a second, slow recombination channel indicates the existence of deep trap states in the hybrid system, which leads to the capture of a large fraction of charge carriers. A change of polymer conformation due to the presence of nc‐CdSe is revealed by low temperature LESR measurements and microwave saturation techniques. The impact of the different recombination behavior on the photovoltaic efficiency of both systems is discussed.  相似文献   

2.
InP/CdSe core/thick‐shell “giant” quantum dots (gQDs) that exhibit blinking‐suppressed two‐color excitonic emission have been synthesized and optically characterized. These type II heterostructures exhibit photoluminescence from both a charge‐separated, near‐infrared type II excitonic state, and a shell‐localized visible‐color excitonic state. Infrared emission is intrinsic to the type II QD, while visible emission can either be eliminated or enhanced through chemical modification of the InP surface prior to CdSe shell growth. Single‐QD photoluminescence measurements confirm that the dual color emission is from individual nanocrystals. The probability of observing dual emission from individual QDs and the extent of blinking suppression increases with shell thickness. Visible emission can be stabilized by the addition of a second shell of CdS, where the resulting InP/CdSe/CdS core/shell/shell nanocrystals afford the strongest blinking suppression, determined by analysis of the Mandel Q parameter. Transient absorption spectroscopy verifies that dual emission arises when hole relaxation from the shell to the core is impeded, possibly as a result of enhanced interfacial hole trapping at F? or O2? defect sites. Electron–hole recombination in the shell then competes with slower type II recombination, providing a different mechanism for breaking Kasha's rule and allowing two colors of light to be emitted from one nanostructure.  相似文献   

3.
The high‐yield fabrication of tetrapodal CdSe, CdTe, and CdSexTe1–x nanocrystals is systematically studied. CdSe nanocrystals are prepared by first controlling the synthesis of high‐quality wurtzite CdSe and zinc blende CdSe nanocrystals at a relatively high temperature (260 °C) by selecting different ligands. Then, based on the phase control of the CdSe nanocrystals, two nanoparticle‐tailoring routes (i.e., a seed‐epitaxial route and ligand‐dependent multi‐injecting route) are used, and a high yield of CdSe tetrapods is obtained. CdTe nanocrystals are prepared by adjusting the ligand composition and the ratio of Cd to Te; CdTe tetrapods are synthesized in high yield using a mixed ligand that does not contain alkylphosphonic acids. Moreover, the nanoscale Te powder (Te nanowires/nanorods), which is highly soluble in the ligand solvent, is first used as a Te source to synthesize CdTe nanocrystals, which remarkably enhanced the output of the CdTe nanocrystals in one reaction. Furthermore, composition‐tunable ternary CdSexTe1–x alloyed tetrapods are synthesized on a large scale, for the first time, by thermolyzing the mixture of the organometallic Cd precursor and the mixed (Se + Te) source in a mixed‐ligand solution. The CdSe, CdTe, and CdSexTe1–x nanocrystals are characterized by transmission electron microscopy (TEM), high‐resolution TEM, selected‐area electron diffraction, X‐ray diffraction, and UV‐vis and photoluminescence (PL) spectroscopy. Interesting nonlinear, composition‐dependent absorption and PL spectra are observed for the ternary CdSexTe1–x alloyed nanocrystals. The band‐edge positions of the nanocrystals of CdSe, CdSexTe1–x, and CdTe are systematically studied by cyclic voltammetry.  相似文献   

4.
Polymer/inorganic-nanocrystals bulk heterojunction solar cells, where inorganic semiconductor nanocrystals such as CdSe, CdS, CdTe, ZnO, TiO2, and silicon, replace the fullerene molecules as the electron acceptors, typically exhibit a power conversion efficiency (PCE) below 3% even after tremendous engineering efforts to optimize the nanocrystal size, shape, and nanoscale morphology. One promising feature of polymer hybrid solar cells is the ability to sensitize conjugated polymers, which on their own absorb only in the visible part of solar spectrum, into the infrared spectral range using infrared-active lead salt nanocrystal quantum dots (NQDs). Here we observed for the first time hole transfer from PbS NQDs to polymers as evidenced by the quenching of the PbS photoluminescence (PL), a sign of the presence of charge separating type II heterojunction. The type II band-offset at the NQD/polymer heterojunction enables efficient hole extraction from NQDs and leads to a record PCE of 3.80%, realized in a planar junction configuration under simulated air mass 1.5 global (AM 1.5G) irradiation of 100 mW/cm2. The photocurrent has an extended spectral range spanning from the ultraviolet (UV) to the infrared (IR). Contributions from the polymer and PbS to the photocurrent were identified. Infrared photons (>700 nm) contribute about 30% of the photocurrent and yield a high external quantum efficiency (EQE) of 20% at 1050 nm.  相似文献   

5.
Metal halide perovskites have aroused tremendous interest in the past several years for their promising applications in display and lighting. However, the development of blue perovskite light‐emitting diodes (PeLEDs) still lags far behind that of their green and red cousins due to the difficulty in obtaining high‐quality blue perovskite emissive layers. In this study, a simple approach is conceived to improve the emission and electrical properties of blue perovskites. By introducing an alkali metal ion to occupy some sites of peripheral suspended organic ligands, the nonradiative recombination is suppressed, and, consequently, blue CsPb(Br/Cl)3 nanocrystals with a high photoluminescence quantum efficiency of 38.4% are obtained. The introduced K+ acts as a new type of metal ligand, which not only suppresses nonradiative pathways but also improves the charge carrier transport of the perovskite nanocrystals. With further engineering of the device structure to balance the charge injection rate, a spectrally stable and efficient blue PeLED with a maximum external quantum efficiency of 1.96% at the emission peak of 477 nm is fabricated.  相似文献   

6.
The charge separation and transport dynamics in CdSe nanoparticle:poly(3‐hexylthiophene) (P3HT) blends are reported as a function of the shape of the CdSe‐nanoparticle electron acceptor (dot, rod, and tetrapod). For optimization of organic photovoltaic device performance it is crucial to understand the role of various nanostructures in the generation and transport of charge carriers. The sample processing conditions are carefully controlled to eliminate any processing‐related effects on the carrier generation and on device performance with the aim of keeping the conjugated polymer phase constant and only varying the shape of the inorganic nanoparticle acceptor phase. The electrodeless, flash photolysis time‐resolved microwave conductivity (FP‐TRMC) technique is used and the results are compared to the efficiency of photovoltaic devices that incorporate the same active layer. It is observed that in nanorods and tetrapods blended with P3HT, the high aspect ratios provide a pathway for the electrons to move away from the dissociation site even in the absence of an applied electric field, resulting in enhanced carrier lifetimes that correlate to increased efficiencies in devices. The processing conditions that yield optimum performance in high aspect ratio CdSe nanoparticles blended with P3HT result in poorly performing quantum dot CdSe:P3HT devices, indicating that the latter devices are inherently limited by the absence of the dimensionality that allows for efficient, prolonged charge separation at the polymer:CdSe interface.  相似文献   

7.
Low‐cost solution‐processed CdTe nanocrystal (NC) solar cells always suffer from a high interface energy barrier and unbalanced hole/electron transport as well as anisotropic atom diffusion on the CdTe surface due to the limited amount of hole/electron interface materials or the difficulty in interface processing. In this work, a novel strategy is first adopted with gradient electron transport layer (CdS/CdSe) modification in the cathode and a new crosslinkable hole transport polymer (P‐TPA) implantation in the anode. The carrier recombination at interfaces is greatly decreased and thus the carrier collection is increased. Moreover, the light harvesting is improved both in short and long wavelength regions, making Jsc and Voc increase simultaneously. A champion solar cell shows a very high power conversion efficiency of 9.2% and an outstanding Jsc of 25.31 mA cm?2, which are among the highest values for all solution‐processed CdTe NC solar cells with a superstrate structure, and the latter value is even higher than that of traditional thick CdTe thin‐film solar cells (2 µm) via the high temperature close space sublimation method. This work demonstrates that facile surface modifications in both the cathode and anode with stepped extraction and organic–inorganic hybridization are very promising in constructing next‐generation highly efficient NC photovoltaic devices.  相似文献   

8.
Low‐cost, large‐scale production of highly photoluminescent semiconductor nanocrystals (NCs) is desirable for a variety of applications. In this paper we report the realization of highly photoluminescent zinc‐blende CdSe nanocrystals from room‐temperature water‐phase synthesis, followed by low‐temperature (80 ± 5 °C) chemical etching in a solution of 3‐amino‐1‐propanol/H2O (v/v = 10/1). X‐ray diffraction (XRD) and transmission electron microscopy (TEM) data indicate that these CdSe NCs exhibit a cubic, zinc‐blende crystal structure. After etching, these CdSe nanocrystals show strong band‐edge photoluminescence (with quantum efficiency as high as 50 %) and lack of deep‐trap emissions. A high‐resolution TEM investigation suggests that this etching not only removes surface irregularities, but also attacks grain boundaries. Moreover, the size distribution reduces upon progressive etching to allow photoluminescence full‐width‐at‐half‐maximum (FWHM) values as low as 30 nm.  相似文献   

9.
Atomically thin transition metal dichalcogenides (TMDCs) have intriguing nanoscale properties like high charge mobility, photosensitivity, layer‐thickness‐dependent bandgap, and mechanical flexibility, which are all appealing for the development of next generation optoelectronic, catalytic, and sensory devices. Their atomically thin thickness, however, renders TMDCs poor absorptivity. Here, bilayer MoS2 is combined with core‐only CdSe QDs and core/shell CdSe/ZnS QDs to obtain hybrids with increased light harvesting and exhibiting interfacial charge transfer (CT) and nonradiative energy transfer (NET), respectively. Field‐effect transistors based on these hybrids and their responses to varying laser power and applied gate voltage are investigated with scanning photocurrent microscopy (SPCM) in view of their potential utilization in light harvesting and photodetector applications. CdSe–MoS2 hybrids are found to exhibit encouraging properties for photodetectors, like high responsivity and fast on/off response under low light exposure while CdSe/ZnS–MoS2 hybrids show enhanced charge carrier generation with increased light exposure, thus suitable for photovoltaics. While distinguishing optically between CT and NET in QD–TMDCs is nontrivial, it is found that they can be differentiated by SPCM as these two processes exhibit distinctive light‐intensity dependencies: CT causes a photogating effect, decreasing the photocurrent response with increasing light power while NET increases the photocurrent response with increasing light power, opposite to CT case.  相似文献   

10.
A water‐soluble conjugated polymer (WCP) poly[(3,4‐dibromo‐2,5‐thienylene vinylene)‐co‐(p‐phenylene‐vinylene)] (PBTPV), containing thiophene rings with high charge‐carrier mobility and benzene rings with excellent solubility is designed and prepared through Wessling polymerization. The PBTPV precursor can be easily processed by employing water or alcohols as the solvents, which are clean, environmentally friendly, and non‐toxic compared with the highly toxic organic solvents such as chloroform and chlorobenzene. As a novel photoelectric material, PBTPV presents excellent hole‐transport properties with a carrier mobility of 5 × 10?4 cm2 V?1 s?1 measured in an organic field‐effect transistor device. By integrating PBTPV with aqueous CdTe nanocrystals (NCs) to produce the active layer of water‐processed hybrid solar cells, the devices exhibit effective power conversion efficiency up to 3.3%. Moreover, the PBTPV can form strong coordination interactions with the CdTe NCs through the S atoms on the thiophene rings, and effective coordination with other nanoparticles can be reasonably expected.  相似文献   

11.
The sophistication with which we can now prepare and characterize inorganic nanoparticles has inspired new areas of research into the fundamental properties and applications of these fascinating nanoscale systems. In this article some of the recent ideas concerning control of their optical properties are examined and explained, focusing on semiconductor nanocrystals. It is known that the optical properties of nanocrystals can be size‐tunable, but it is less obvious how shape matters. To explain how size as well as shape matters, the electronic structure of nanocrystals is sketched in relatively simple terms, leading to an introduction to deeper concepts at the heart of spectroscopy such as the exciton fine structure. The exciton fine structure states, although obscured by inhomogeneous line broadening, dictate selection rules for optical excitation. These viewpoints are compared and contrasted to well‐established principles in molecular spectroscopy that provide inspiration as well as perspective. The control of optical poperties is founded on our ability to prepare good quality colloidal particles. Recent advances in nanocrystal shape control are described. The current status of heterostructures is examined, with an emphasis on charge separation in CdSe–CdTe nanorods.  相似文献   

12.
M. Lucia Curri and co‐workers report on p. 2009 an epoxy‐based negative tone photoresist that can be functionalized with red emitting CdSe@ZnS core/shell type nanocrystals and patterned by UV lithography. The 3D high aspect ratio of the microfabricated structures proves that lithographic properties of the functional nanocomposite are retained and the nanocrystals properties conveyed into the resist. The emitting nanocomposite represents a convenient model for material functionalization expandable to nanocrystals with different properties. An epoxy‐based negative‐tone photoresist, which is known as a suitable material for high‐aspect‐ratio surface micromachining, is functionalized with red‐light‐emitting CdSe@ZnS nanocrystals (NCs). The proper selection of a common solvent for the NCs and the resist is found to be critical for the efficient incorporation of the NCs in the epoxy matrix. The NC‐modified resist can be patterned by standard UV lithography down to micrometer‐scale resolution, and high‐aspect‐ratio structures have been successfully fabricated on a 100 mm scaled wafer. The “as‐fabricated”, 3D, epoxy‐based surface microstructures show the characteristic luminescent properties of the embedded NCs, as verified by fluorescence microscopy. This issue demonstrates that the NC emission properties can be conveniently conveyed into the polymer matrix without deteriorating the lithographic performance of the latter. The dimensions, the resolution, and the surface morphology of the NC‐modified‐epoxy microstructures exhibit only minor deviations with respect to that of the unmodified reference material, as examined by means of microscopic and metrologic investigations. The proposed approach of the incorporation of emitting and non‐bleachable NCs into a photoresist opens novel routes for surface patterning of integrated microsystems with inherent photonic functionality at the micro‐ and nanometer‐scale for light sensing and emitting applications.  相似文献   

13.
In nature, charge recombination in light‐harvesting reaction centers is minimized by efficient charge separation. Here, it is aimed to mimic this by coupling dye‐sensitized TiO2 nanocrystals to a decaheme protein, MtrC from Shewanella oneidensis MR‐1, where the 10 hemes of MtrC form a ≈7‐nm‐long molecular wire between the TiO2 and the underlying electrode. The system is assembled by forming a densely packed MtrC film on an ultra‐flat gold electrode, followed by the adsorption of approximately 7 nm TiO2 nanocrystals that are modified with a phosphonated bipyridine Ru(II) dye (RuP). The step‐by‐step construction of the MtrC/TiO2 system is monitored with (photo)electrochemistry, quartz‐crystal microbalance with dissipation (QCM‐D), and atomic force microscopy (AFM). Photocurrents are dependent on the redox state of the MtrC, confirming that electrons are transferred from the TiO2 nanocrystals to the surface via the MtrC conduit. In other words, in these TiO2/MtrC hybrid photodiodes, MtrC traps the conduction‐band electrons from TiO2 before transferring them to the electrode, creating a photobioelectrochemical system in which a redox protein is used to mimic the efficient charge separation found in biological photosystems.  相似文献   

14.
The application of graphene‐based membranes is hindered by their poor stability under practical hydrodynamic conditions. Here, nanocarbon architectures are designed by intercalating surface‐functionalized, small‐diameter, multi‐walled carbon nanotubes (MWCNTs) into reduced graphene oxide (rGO) sheets to create highly stable membranes with improved water permeability and enhanced membrane selectivity. With the intercalation of 10 nm diameter MWCNTs, the water permeability reaches 52.7 L m?2 h?1 bar?1, which is 4.8 times that of pristine rGO membrane and five to ten times higher than most commercial nanofiltration membranes. The membrane also attains almost 100% rejection for three organic dyes of different charges. More importantly, the membrane can endure a turbulent hydrodynamic flow with cross‐flow rates up to 2000 mL min?1 and a Reynolds number of 4667. Physicochemical characterization reveals that the inner graphitic walls of the MWCNTs can serve as spacers, while nanoscale rGO foliates on the outer walls interconnect with the assimilated rGO sheets to instill superior membrane stability. In contrast, intercalating with single‐walled nanotubes fails to reproduce such stability. Overall, this nanoarchitectured design is highly versatile in creating both graphene‐rich and CNT‐rich all‐carbon membranes with engineered nanochannels, and is regarded as a general approach in obtaining stable membranes for realizing practical applications of graphene‐based membranes.  相似文献   

15.
Hybrid composites obtained upon blending conjugated polymers and colloidal semiconductor nanocrystals are regarded as attractive photo­active materials for optoelectronic applications. Here it is demonstrated that tailoring nanocrystal surface chemistry permits to control non‐covalent and electronic interactions between organic and inorganic components. The pending moieties of organic ligands at the nanocrystal surface are shown to not merely confer colloidal stability while hindering charge separation and transport, but drastically impact morphology of hybrid composites during formation from blend solutions. The relevance of this approach to photovoltaic applications is demonstrated for composites based on poly(3‐hexylthiophene) and lead sulfide nanocrystals, considered as inadequate until this report, which enable the fabrication of hybrid solar cells displaying a power conversion efficiency that reaches 3%. By investigating (quasi)steady‐state and time‐resolved photo‐induced processes in the nanocomposites and their constituents, it is ascertained that electron transfer occurs at the hybrid interface yielding long‐lived separated charge carriers, whereas interfacial hole transfer appears hindered. Here a reliable alternative aiming to gain control over macroscopic optoelectronic properties of polymer/nanocrystal composites by mediating their non‐covalent interactions via ligands' pending moieties is provided, thus opening new possibilities towards efficient solution‐processed hybrid solar cells.  相似文献   

16.
Effective engineering of surface ligands in semiconductor nanocrystals can facilitate the electronic interaction between the individual nanocrystals, making them promising for low‐cost optoelectronic applications. Here, the use of high purity Cu2ZnSnS4 (CZTS) nanocrystals as the photoactive layer and hole‐transporting material is reported in low‐temperature solution‐processed solar cells. The high purity CZTS nanocrystals are prepared by engineering the surface ligands of CZTS nanocrystals, capped originally with the long‐chain organic ligand oleylamine. After ligand removal, CZTS nanocrystals show substantial improvement in photoconductivity and mobility, displaying also an appreciable photoresponse in a simple heterojunction solar cell architecture. More notably, CZTS nanocrystals exhibit excellent hole‐transporting properties as interface layer in perovskite solar cells, yielding power conversion efficiency (PCE) of 15.4% with excellent fill factor (FF) of 81%. These findings underscore the importance of removing undesired surface ligands in nanocrystalline optoelectronic devices, and demonstrate the great potential of CZTS nanocrystals as both active and passive material for the realization of low‐cost efficient solar cells.  相似文献   

17.
The quality of heterojunctions at the quantum dot (QD)‐TiO2 nanotube (TNT) interface has important implications on the efficiencies of photoelectrochemical solar cells. Here, it is shown that electrophoretic deposition of pre‐synthesized thioacid‐capped CdTe QDs results in relatively poor charge transfer across the heterojunctions. This is likely due to the intermediate layer of bifunctional linkers (S‐R‐COOH) in between the QDs and TNT. On the other hand, CdTe QD‐sensitized TNT prepared by in situ deposition in aqueous medium provides direct QD‐TNT contact, and hence more favorable heterojunction for charge transfer. This is exemplified not only by the drastic improvement in photocurrent efficiencies, but also provides clear difference on the size‐dependent electron injection efficiencies from the CdTe QDs of different sizes. By extending the system further to CdSe QDs, drastic enhancement is found when carrying out the in situ deposition in an organic medium. The results are discussed in terms of the nature of deposition and the corresponding charge transport characteristics. More importantly, the work reflects the intricacy of the effects of QD size and the quality of the heterojunctions on the overall photoconversion efficiencies.  相似文献   

18.
A novel catalyst‐free synthetic strategy for producing high‐quality CdTe nanowires in solution is proposed. A special reaction condition is intentionally constructed in the reaction system to induce the formation of nanowires through oriented in situ assembly of tiny particles. To establish such special synthetic conditions in the CdTe system, not only are its typical features and possible solutions deeply analyzed, but also related factors, such as the ligand environment, injection and growth temperature, and Cd‐to‐Te precursor ratio, are systemically investigated. High‐quality ultralong (up to 10 μm) and ultrathin (less than 10 nm) CdTe nanowires are produced in solution under optimal reaction conditions. Morphological, spectral, and compositional analyses are performed to examine the products formed at different reaction stages in order to clarify the formation mechanism of the CdTe nanowires. Furthermore, the transformation of the CdTe nanowires into CdTe/CdSe core–shell heterostructures is intensively explored, and the CdSe epitaxial growth process is specially tracked by morphological and spectral characterization techniques. Finally, CdTe nanowires coated with a continuous and dense CdSe shell are successfully fabricated by using a proper coating protocol.  相似文献   

19.
The efficiency of electronic-excitation energy transfer from organic semiconductor TPD to CdSe/CdS/ZnS nanocrystals passivated with different organic ligands is investigated. It is shown that the rate of energy transfer from TPD to nanocrystals decreases with increasing thickness of the passivation coating. It is suggested that the Förster mechanism is responsible for the excitation transfer.  相似文献   

20.
Near‐infrared organic light‐emitting diodes (NIR OLEDs) enable many unique applications ranging from night‐vision displays and photodynamic therapies. However, the development of efficient NIR OLEDs with a low efficiency roll‐off is still challenging. Here, a series of new heteroleptic Pt(II) complexes ( 1 – 4 ) flanked by both pyridyl pyrimidinate and functional azolate chelates are synthesized. The reduced ππ* energy gap of the pyridyl pyrimidinate chelate, and strong intermolecular interaction and high crystallinity in vacuum‐deposited thin films engender strong intermolecular charge transfer transition including metal–metal‐to‐ligand charge transfer; thereby, exhibiting efficient photoluminescence within 776–832 nm and short radiative lifetimes of 0.52–0.79 µs. Consequently, nondoped NIR‐emitting OLEDs based on these Pt(II) complexes are fabricated, to which Pt(II) complexes 2 and 4 give record high maximum external quantum efficiency of 10.61% at 794 nm and 9.58% at 803 nm, respectively. Moreover, low efficiency roll‐off is also observed, among which the device efficiencies of 2 and 4 are at least four times higher than that of the best NIR‐emitting OLEDs recorded at current density of 100 mA cm?2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号