首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The NIR light‐induced imaging‐guided cancer therapy is a promising route in the targeting cancer therapy field. However, up to now, the existing single‐modality light‐induced imaging effects are not enough to meet the higher diagnosis requirement. Thus, the multifunctional cancer therapy platform with multimode light‐induced imaging effects is highly desirable. In this work, captopril stabilized‐Au nanoclusters Au25(Capt)18?(Au25) are assembled into the mesoporous silica shell coating outside of Nd3+‐sensitized upconversion nanoparticles (UCNPs) for the first time. The newly formed Au25 shell exhibits considerable photothermal effects, bringing about the photothermal imaging and photoacoustic imaging properties, which couple with the upconversion luminescence imaging. More importantly, the three light‐induced imaging effects can be simultaneously achieved by exciting with a single NIR light (808 nm), which is also the triggering factor for the photothermal and photodynamic cancer therapy. Besides, the nanoparticles can also present the magnetic resonance and computer tomography imaging effects due to the Gd3+ and Yb3+ ions in the UCNPs. Furthermore, due to the photodynamic and the photothermal effects, the nanoparticles possess efficient in vivo tumor growth inhibition under the single irradiation of 808 nm light. The multifunctional cancer therapy platform with multimode imaging effects realizes a true sense of light‐induced imaging‐guided cancer therapy.  相似文献   

2.
Stimuli‐responsive anticancer agents are of particular interest in the field of cancer therapy. Nevertheless, so far stimuli‐responsive photothermal agents have been explored with limited success for cancer photothermal therapy (PTT). In this work, as a proof‐of‐concept, a pH‐responsive photothermal nanoconjugate for enhanced PTT efficacy, in which graphene oxide (GO) with broad NIR absorbance and effective photothermal conversion efficiency is selected as a typical model receptor of fluorescence resonance energy transfer (FRET), and grafted cyanine dye (e.g., Cypate) acts as the donor of near‐infrared fluorescence (NIRF), is reported for the first time. The conjugate of Cypate‐grafted GO exhibits different conformations in aqueous solutions at various pH, which can trigger pH‐dependent FRET effect between GO and Cypate and thus induce pH‐responsive photothermal effect of GO‐Cypate. GO‐Cypate exhibits severe cell damage owing to the enhanced photothermal effect in lysosomes, and thus generate synergistic PTT efficacy with tumor ablation upon photoirradiation after a single‐dose intravenous injection. The photothermal nanoconjugate with broad NIR absorbance as the effective receptor of FRET can smartly convert emitted NIRF energy from donor cyanine dye into additional photothermal effect for improving PTT. These results suggest that the smart nanoconjugate can act as a promising stimuli‐responsive photothermal nanoplatform for cancer therapy.  相似文献   

3.
4.
Photothermal therapy (PTT) is of particular importance as a highly potent therapeutic modality in cancer therapy. However, a critical challenge still remains in the exploration of highly effective strategy to maximize the PTT efficiency due to tumor thermoresistance and thus frequent tumor recurrence. Here, a rational fabrication of the micelles that can achieve mutual synergy of PTT and molecularly targeted therapy (MTT) for tumor ablation is reported. The micelles generate both distinct photothermal effect from Cypate through enhanced photothermal conversion efficiency and pH‐dependent drug release. The micelles further exhibit effective cytoplasmic translocation of 17‐allylamino‐17‐demethoxygeldanamycin (17AAG) through reactive oxygen species mediated lysosomal disruption caused by Cypate under irradiation. Translocated 17AAG specifically bind with heat shock protein 90 (HSP90), thereby inhibiting antiapoptotic p‐ERK1/2 proteins for producing preferable MTT efficiency through early apoptosis. Meanwhile, translocated 17AAG molecules further block stressfully overexpressed HSP90 under irradiation and thus inhibit the overexpression of p‐Akt for achieving the reduced thermoresistance of tumor cells, thus promoting the PTT efficiency through boosting both early and late apoptosis of Cypate. Moreover, the micelles possess enhanced resistance to photobleaching, preferable cellular uptake, and effective tumor accumulation, thus facilitating mutually synergistic PTT/MTT treatments with tumor ablation. These findings represent a general approach for potent cancer therapy.  相似文献   

5.
Tellurium (Te) is an important semiconductor material with low band‐gap energy, which has attracted considerable attention in recent years, due to its special chemical and physical properties and wide potential in electrochemistry, optoelectronics, and biological fields. This study demonstrates a facile and high‐yield synthesis strategy of Te nanorods (PTW‐TeNRs) decorated by polysaccharide–protein complex, which can achieve simultaneous chemo‐photothermal combination therapy against cancers. PTW‐TeNRs alone possess high stability under physiological conditions, potent anticancer activities through induction of reactive oxygen species overproduction, and high selectivity among tumor and normal cells. More importantly, they exhibit strong near‐infrared (NIR) absorbance and good photothermal conversion ability from NIR light to heat energy. Furthermore, in combination with NIR laser irradiation, PTW‐TeNRs exhibit excellent chemo‐photothermal efficiency and low toxicity as evidenced by highly efficient tumor ablation ability, but show no obvious histological damage to the major organs. Taken together, this study provides a valid tactic for facile synthesis of multifunctional tellurium nanorods for efficient and combinational cancer therapy.  相似文献   

6.
Nanorod‐based drug delivery systems have attracted great interest because of their enhanced cell internalization capacity and improved drug loading property. Herein, novel mesoporous silica nanorods (MSNRs) with different lengths are synthesized and used as nanocarriers to achieve higher drug loading and anticancer activity. As expected, MSNRs‐based drug delivery systems can effectively enhance the loading capacity of drugs and penetrate into tumor cells more rapidly than spherical nanoparticles due to their greater surface area and trans‐membrane transporting rates. Interestingly, these tailored MSNRs also enhance the cellular uptake of doxorubicin (DOX) in cancer cells, thus significantly enhancing its anticancer efficacy for hundreds of times by inducing of cell apoptosis. Internalized MSNRs‐DOX triggers intracellular reactive oxygen species (ROS) overproduction, which subsequently activates p53 and mitogen‐activated protein kinases (MAPKs) pathways to promote cell apoptosis. MSNRs‐DOX nanosystem also shows prolonged blood circulation time in vivo. In addition, MSNRs‐DOX significantly inhibits in vivo tumor growth in nude mice model and effectively reduced its in vivo toxicity. Therefore, this study provides an effective and safe strategy for designing chemotherapeutic agents for precise cancer therapy.  相似文献   

7.
Hypoxic microenvironment severely reduces therapeutic efficacy of oxygen‐dependent photodynamic therapy in solid tumor due to the hampered cytotoxic oxygen radicals generation. Herein, a biocompatible nanoparticle (NP) is developed by combining bovine serum albumin, indocyanine green (ICG), and an oxygen‐independent radicals generator (AIPH) for efficient sequential cancer therapy, denoted as BIA NPs. Upon near‐infrared irradiation, the photothermal effect generated by ICG will induce rapid decomposition of AIPH to release cytotoxic alkyl radicals, leading to cancer cell death in both normoxic and hypoxic environments. Moreover, such nanosystem provides the highest AIPH loading capacity (14.9%) among all previously reported radical nanogenerators (generally from 5–8%). Additionally, the aggregation‐quenched fluorescence of ICG molecules in the NPs can be gradually released and recovered upon irradiation enabling real‐time drug release monitoring. More attractively, these BIA NPs exhibit remarkable anticancer effects both in vitro and in vivo, achieving 100% tumor elimination and 100% survival rate among 50 days treatment. These results highlight that this albumin‐based nanoplatform is promising for high‐performance cancer therapy circumventing hypoxic tumor environment and possessing great potential for future clinical translation.  相似文献   

8.
The development of cancer combination therapies, many of which rely on nanoscale theranostic agents, has received increasing attention in recent years. In this work, polyethylene glycol (PEG) modified mesoporous silica (MS) coated single‐walled carbon nanotubes (SWNTs) are fabricated and utilized as a multifunctional platform for imaging guided combination therapy of cancer. A model chemotherapy drug, doxorubicin (DOX), could be loaded into the mesoporous structure of the obtained SWNT@MS‐PEG nano‐carriers with high efficiency. Upon stimulation under near‐infrared (NIR) light, photothermally triggered drug release from DOX loaded SWNT@MS‐PEG is observed inside cells, resulting in a synergistic cancer cell killing effect. As revealed by both photoacoustic (PA) and magnetic resonance (MR) imaging, we further uncover efficient tumor accumulation of SWNT@MS‐PEG/DOX after intravenous injection into mice. In vivo combination therapy using this agent is further demonstrated in a mouse tumor model, achieving a remarkable synergistic anti‐tumor effect superior to that obtained by mono‐therapy. Our work presents a new type of theranostic nano‐platform, which could load therapeutic molecules with high efficiency, be responsive to external NIR stimulation, and at the same time serve as a diagnostic imaging agent.  相似文献   

9.
The wide clinical application of photodynamic therapy (PDT) is hampered by poor water solubility, low tumor selectivity, and nonspecific activation of photosensitizers, as well as tumor hypoxia which is common for most solid tumors. To overcome these limitations, tumor‐targeting, redox‐activatable, and oxygen self‐enriched theranostic nanoparticles are developed by synthesizing chlorin e6 (Ce6) conjugated hyaluronic acid (HA) with reducible disulfide bonds (HSC) and encapsulating perfluorohexane (PFH) within the nanoparticles (PFH@HSC). The fluorescence and phototoxicity of PFH@HSC nanoparticles are greatly inhibited by a self‐quenching effect in an aqueous environment. However, after accumulating in tumors through passive and active tumor‐targeting, PFH@HSC appear to be activated from “OFF” to “ON” in photoactivity by the redox‐responsive destruction of the vehicle's structure. In addition, PFH@HSC can load oxygen within lungs during blood circulation, and the oxygen dissolved in PFH is slowly released and diffuses over the entire tumor, finally resulting in remarkable tumor hypoxia relief and enhancement of PDT efficacy by generating more singlet oxygen. Taking advantage of the excellent imaging performance of Ce6, the tumor accumulation of PFH@HSC can be monitored by fluorescent and photoacoustic imaging after intravenous administration into tumor‐bearing mice. This PFH@HSC nanoparticle might have good potential for dual imaging‐guided PDT in hypoxic solid tumor treatment.  相似文献   

10.
Myeloid‐derived suppressor cells (MDSCs) are garnering increasing attention given their role in tumor development. Herein, a nano‐enabled strategy is demonstrated for the eradication of tumor‐infiltrated MDSCs by reversing hypoxia. Oxygen‐independent photodynamic bismuth tungstate nanoparticles (Bi2WO6 NPs) are loaded into reactive oxygen species (ROS) responsive platelet membranes (PMs) to form a hybrid (PM‐BiW NPs). P‐Selectin on PMs endows PM‐BiW NPs with selectivity toward cancer cells. Once in the tumor, laser illumination stimulates the Bi2WO6 NPs photothermally and photodynamically, which produces enormous quantities of hydroxyl radicals. These hydroxyl radicals help rupture the PM and mitigate hypoxia with the assistance of ionizing radiation. This effectively remodels the tumor microenvironment toward one disfavoring the recruitment of MDSCs and contributes to better prognosis. To better understand the mechanism, the expression levels of a set of markers are monitored. It is found that the downregulations of hypoxia‐inducible factor‐1α, ectonucleoside triphosphate diphosphohydrolase 2, and adenosine‐5‐phosphoricacid are behind the blocked infiltration of MDSCs. This platform strategy offers a promising approach to overcome the immunosuppression caused by MDSCs through a trimodal therapy integrating the power of photothermal and photodynamic therapy in addition to radiation therapy.  相似文献   

11.
Polypyrrole nanoparticles conjugating gadolinium chelates were successfully fabricated for dual‐modal magnetic resonance imaging (MRI) and photoacoustic imaging guided photothermal therapy of cancer, from a mixture of pyrrole and pyrrole‐1‐propanoic acid through a facile one‐step aqueous dispersion polymerization, followed by covalent attachment of gadolinium chelate, using polyethylene glycol as a linker. The obtained PEGylated poly­pyrrole nanoparticles conjugating gadolinium chelates (Gd‐PEG‐PPy NPs), sized around around 70 nm, exhibited a high T1 relaxivity coefficient of 10.61 L mm ?1 s?1, more than twice as high as that of the relating free Gd3+ complex (4.2 L mm –1 s?1). After 24 h intravenous injection of Gd‐PEG‐PPy NPs, the tumor sites exhibited obvious enhancement in both T1‐weighted MRI intensity and photoacoustic signal compared with that before injection, indicating the efficient accumulation of Gd‐PEG‐PPy NPs due to the introduction of the PEG layer onto the particle surface. In addition, tumor growth could be effectively inhibited after treatment with Gd‐PEG‐PPy NPs in combination with near‐infrared laser irradiation. The passive targeting and high MRI/photo­acoustic contrast capability of Gd‐PEG‐PPy NPs are quite favorable for precise cancer diagnosing and locating the tumor site to guide the external laser irradiation for photothermal ablation of tumors without damaging the surrounding healthy tissues. Therefore, Gd‐PEG‐PPy NPs may assist in better monitoring the therapeutic process, and contribute to developing more effective “personalized medicine,” showing great potential for cancer diagnosis and therapy.  相似文献   

12.
Renal‐clearable nanoparticles have made it possible to overcome the toxicity by nonspecific accumulation in healthy tissues/organs due to their highly efficient clearance characteristics. However, their tumor uptake is relatively low due to the short blood circulation time and rapid body elimination. Here, this problem is addressed by developing renal‐clearable nanoparticles by controlled coating of sub‐6 nm CuS nanodots (CuSNDs) on doxorubicin ladened mesoporous silica nanoparticles (pore size ≈6 nm) for multimodal application. High tumor uptake of the as‐synthesized nanoparticles (abbreviated as MDNs) is achieved due to the longer blood circulation time. The MDNs also show excellent performance in bimodal imaging. Moreover, the MDNs demonstrated a photothermally sensitive drug release and pronounced synergetic effects of chemo‐photothermal therapy, which were confirmed by two different tumor models in vivo. A novel key feature of the proposed synthesis is the use of renal‐clearable CuSNDs and biodegradable mesoporous silica nanoparticles which also are renal‐clearable after degradation. Therefore, the MDNs would be rapidly degraded and excreted in a reasonable period in living body and avoid long‐term toxicity. Such biodegradable and clearable single‐compartment theranostic agents applicable in highly integrated multimodal imaging and multiple therapeutic functions may have substantial potentials in clinical practice.  相似文献   

13.
As electrical energy storage and delivery devices, carbon‐based electrical double‐layer capacitors (EDLCs) have attracted much attention for advancing the energy‐efficient economy. Conventional methods for activated carbon (AC) synthesis offer limited control of their surface area and porosity, which results in a typical specific capacitance of 70–120 F g?1 in commercial EDLCs based on organic electrolytes and ionic liquids (ILs). Additionally, typical ACs produced from natural precursors suffer from the significant variation of their properties, which is detrimental for EDLC use in automotive applications. A novel method for AC synthesis for EDLCs is proposed. This method is based on direct activation of synthetic polymers. The proposed procedure allowed us to produce ACs with ultrahigh specific surface area of up to 3432 m2 g?1 and volume of 0.5–4 nm pores up to 2.39 cm3 g?1. The application of the produced carbons in EDLCs based on IL electrolyte showed specific capacitance approaching 300 F g?1, which is unprecedented for carbon materials, and 5–8% performance improvement after 10 000 charge–discharge cycles at the very high current density of 10 A g?1. The remarkable characteristics of the produced materials and the capability of the fabricated EDLCs to operate safely in a wide electrochemical window at elevated temperatures, suggest that the proposed synthesis route offers excellent potential for large‐scale material production for EDLC use in electric vehicles and industrial applications.  相似文献   

14.
15.
High‐security nanoplatform with enhanced therapy compliance is extremely promising for tumor. Herein, using a simple and high‐efficient self‐assembly method, a novel active‐targeting nanocluster probe, namely, Ag2S/chlorin e6 (Ce6)/DOX@DSPE‐mPEG2000‐folate (ACD‐FA) is synthesized. Experiments indicate that ACD‐FA is capable of specifically labeling tumor and guiding targeting ablation of the tumor via precise positioning from fluorescence and photoacoustic imaging. Importantly, the probe is endowed with a photodynamic “on‐off” effect, that is, Ag2S could effectively quench the fluorescence of chlorin e6 (89.5%) and inhibit release of 1O2 (92.7%), which is conducive to avoid unwanted phototoxicity during transhipment in the body, and only after nanocluster endocytosed by tumor cells could release Ce6 to produce 1O2. Moreover, ACD‐FA also achieves excellent acid‐responsive drug release, and exhibits eminent chemo‐photothermal and photodynamic effects upon laser irradiation. Compared with single or two treatment combining modalities, ACD‐FA could provide the best cancer therapeutic effect with a relatively low dose, because it made the most of combined effect from chemo‐photothermal and controlled photodynamic therapy, and significantly improves the drug compliance. Besides, the active‐targeting nanocluster notably reduces nonspecific toxicity of both doxorubicin and chlorin e6. Together, this study demonstrates the potency of a newly designed nanocluster for nonradioactive concomitant therapy with precise tumor‐targeting capability.  相似文献   

16.
Hydrous ruthenium oxide (RuO2)/graphene sheet composites (ROGSCs) with different loadings of Ru are prepared by combining sol–gel and low‐temperature annealing processes. The graphene sheets (GSs) are well‐separated by fine RuO2 particles (5–20 nm) and, simultaneously, the RuO2 particles are anchored by the richly oxygen‐containing functional groups of reduced, chemically exfoliated GSs onto their surface. Benefits from the combined advantages of GSs and RuO2 in such a unique structure are that the ROGSC‐based supercapacitors exhibit high specific capacitance (~570 F g?1 for 38.3 wt% Ru loading), enhanced rate capability, excellent electrochemical stability (~97.9% retention after 1000 cycles), and high energy density (20.1 Wh kg?1) at low operation rate (100 mA g?1) or high power density (10000 W kg?1) at a reasonable energy density (4.3 Wh kg?1). Interestingly, the total specific capacitance of ROGSCs is higher than the sum of specific capacitances of pure GSs and pure RuO2 in their relative ratios, which is indicative of a positive synergistic effect of GSs and RuO2 on the improvement of electrochemical performance. These findings demonstrate the importance and great potential of graphene‐based composites in the development of high‐performance energy‐storage systems.  相似文献   

17.
The ideal theranostic nanoplatform for tumors is a single nanoparticle that has a single semiconductor or metal component and contains all multimodel imaging and therapy abilities. The design and preparation of such a nanoparticle remains a serious challenge. Here, with FeS2 as a model of a semiconductor, the tuning of vacancy concentrations for obtaining “all‐in‐one” type FeS2 nanoparticles is reported. FeS2 nanoparticles with size of ≈30 nm have decreased photoabsorption intensity from the visible to near‐infrared (NIR) region, due to a low S vacancy concentration. By tuning their shape/size and then enhancing the S vacancy concentration, the photoabsorption intensity of FeS2 nanoparticles with size of ≈350 nm (FeS2‐350) goes up with the increase of the wavelength from 550 to 950 nm, conferring the high NIR photothermal effect for thermal imaging. Furthermore, this nanoparticle has excellent magnetic properties for T2‐weighted magnetic resonance imaging (MRI). Subsequently, FeS2‐350 phosphate buffer saline (PBS) dispersion is injected into the tumor‐bearing mice. Under the irradiation of 915‐nm laser, the tumor can be ablated and the metastasis lesions in liver suffer significant inhibition. Therefore, FeS2‐350 has great potential to be used as novel “all‐in‐one” multifunctional theranostic nanoagents for MRI and NIR dual‐modal imaging guided NIR‐photothermal ablation therapy (PAT) of tumors.  相似文献   

18.
Perovskite solar cells have achieved the highest power conversion efficiencies on metal oxide n‐type layers, including SnO2 and TiO2. Despite ZnO having superior optoelectronic properties to these metal oxides, such as improved transmittance, higher conductivity, and closer conduction band alignment to methylammonium (MA)PbI3, ZnO is largely overlooked due to a chemical instability when in contact with metal halide perovskites, which leads to rapid decomposition of the perovskite. While surface passivation techniques have somewhat mitigated this instability, investigations as to whether all metal halide perovskites exhibit this instability with ZnO are yet to be undertaken. Experimental methods to elucidate the degradation mechanisms at ZnO–MAPbI3 interfaces are developed. By substituting MA with formamidinium (FA) and cesium (Cs), the stability of the perovskite–ZnO interface is greatly enhanced and it is found that stability compares favorably with SnO2‐based devices after high‐intensity UV irradiation and 85 °C thermal stressing. For devices comprising FA‐ and Cs‐based metal halide perovskite absorber layers on ZnO, a 21.1% scanned power conversion efficiency and 18% steady‐state power output are achieved. This work demonstrates that ZnO appears to be as feasible an n‐type charge extraction layer as SnO2, with many foreseeable advantages, provided that MA cations are avoided.  相似文献   

19.
Micro/nanorobots have the potential to be remotely propelled and manipulated in complex biological fluid and organ tissue. However, the combination of the sophisticated physiological barriers, remote-controlled navigation, real-time motion tracking, and diagnostic/therapeutic effects are tremendous challenges for application and translation. An unique sequential magneto-actuated and optics-triggered biomicrorobot (AI microrobot) for actively targeted cancer treatment is prepared. The AI microrobot consists of two components, magnetospirillum magneticum (AMB-1), providing the ability to autonomously swim toward the tumor site via internal hypoxia-driven effects and an external applied magnetic field, and indocyanine green nanoparticles, acting as a fluorescence imaging agent and photothermal therapy. The AI microrobots are tracked in vivo by fluorescence and magnetic resonance imaging. It is found that the AI microrobots can sequentially migrate to the hypoxic internal area of tumors and then effectively eradicate solid tumors through photothermal therapy under NIR laser irradiation. The sequential magneto-actuated and optics-triggered AI microrobots platform described here presents a bioinspired strategy toward remotely controlled propulsion, actively targeted cargo delivery, and satisfactory therapeutic performance in the circulatory system.  相似文献   

20.
Up to date, a large variety of liposomal nanodrugs have been explored for cancer nanomedicine, showing encouraging results in both preclinical animal experiments and clinical treatment of cancer patients. Herein, a phospholipid conjugated with a cisplatin prodrug is used as the major structure component of liposomes together with other commercial lipids via self‐assembling. By doping with 1,1′‐dioctadecyl‐3,3,3′,3′‐tetramethylindotricarbocyanine iodide (DiR), a lipophilic dye with strong near infrared (NIR) absorbance and fluorescence, the obtained DiR‐Pt(IV)‐liposome is found to be an effective probe for in vivo NIR fluorescence and photoacoustic bimodal imaging. Attributing to its intrinsically doped cis‐Pt(IV) prodrug, efficient photothermal conversion ability, and excellent tumor homing ability, DiR‐Pt(IV)‐liposome confers greatly enhanced therapeutic outcomes in the combined photothermal‐chemotherapy. Moreover, Pt(IV)‐liposome is also demonstrated to be an efficient carrier for both small hydrophilic molecules and proteins, which are encapsulated inside the water‐cavity of liposomes, further demonstrating the versatile functions of this nanoplatform. This study develops a unique type of liposomal nanomedicine with a prodrug conjugated phospholipid as the major structure component. Such Pt(IV)‐liposome is featured with advantages including precisely defined/easily tunable drug compositions, stealth‐like pharmacokinetics, efficient tumor passive uptake, and the capabilities to simultaneously load with various types of imaging or therapeutic agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号