首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The performance of C60‐based organic vertical field‐effect transistors (VFETs) is investigated as a function of key geometrical parameters to attain a better understanding of their operation mechanism and eventually to enhance their output current for maximal driving capability. To this end, a 2D device simulation is performed and compared with experimental results. The results reveal that the output current scales mostly with the width of its drain electrode, which is in essence equivalent to the channel width in conventional lateral‐channel transistors, but that of the source electrode and the thickness of C60 layers underneath the source electrode also play subtle but important roles mainly due to the source contact‐limited behavior of the organic VFETs under study. With design strategies acquired from this study, a VFET with an on/off ratio of 5.5 × 105 and on‐current corresponding to a channel length of near 1 μm in a conventional lateral‐channel organic field‐effect transistor (FET) is demonstrated, while the drain width of the VFET and the channel width of the lateral‐channel organic FET are the same.  相似文献   

2.
Wide‐bandgap conjugated polymers with a linear naphthacenodithiophene (NDT) donor unit are herein reported along with their performance in both transistor and solar cell devices. The monomer is synthesized starting from 2,6‐dihydroxynaphthalene with a double Fries rearrangement as the key step. By copolymerization with 2,1,3‐benzothiadiazole (BT) via a palladium‐catalyzed Suzuki coupling reaction, NDT‐BT co‐polymers with high molecular weights and narrow polydispersities are afforded. These novel wide‐bandgap polymers are evaluated as the semiconducting polymer in both organic field effect transistor and organic photovoltaic applications. The synthesized polymers reveal an optical bandgap in the range of 1.8 eV with an electron affinity of 3.6 eV which provides sufficient energy offset for electron transfer to PC70BM acceptors. In organic field effect transistors, the synthesized polymers demonstrate high hole mobilities of around 0.4 cm2 V–1 s–1. By using a blend of NDT‐BT with PC70BM as absorber layer in organic bulk heterojunction solar cells, power conversion efficiencies of 7.5% are obtained. This value is among the highest obtained for polymers with a wider bandgap (larger than 1.7 eV), making this polymer also interesting for application in tandem or multijunction solar cells.  相似文献   

3.
Physically flexible electronics offer a wide range of benefits, including the development of next‐generation consumer electronics and healthcare products. The advancement of physical flexibility, typically achieved by the reduction of the total device thickness, including substrates and encapsulation layers, shows great promise for skin‐laminated electronics. Organic electronics—devices relying on carbon‐based materials—offer many advantages over their inorganic counterparts, including the following: significantly lower fabrication temperatures resulting in alternative fabrication techniques, including inkjet and roll‐to‐roll printing, enabling low‐cost and large‐area fabrication; biocompatibility; and spectacular physical flexibility. This article presents a review, spanning the last two decades, of organic field‐effect transistors with the total thickness of just a few microns as well as devices demonstrated in this decade with a total thickness of few hundred of nanometers. A handful of demonstrations of other organic electronic thin film devices are also presented.  相似文献   

4.
The film thickness of one of the most crystalline and highest performing polymer semiconductors, poly(2,5‐bis(3‐tetradecylthiophen‐2‐yl)thieno[3,2‐b]thiophene) (PBTTT), is varied in order to determine the effects of interfaces and confinement on the microstructure and performance in organic field effect transistors (OFETs). Crystalline texture and overall film crystallinity are found to depend strongly on film thickness and thermal processing. The angular distribution of crystallites narrows upon both a decrease in film thickness and thermal annealing. These changes in the film microstructure are paired with thin‐film transistor characterization and shown to be directly correlated with variations in charge carrier mobility. Charge transport is shown to be governed by film crystallinity in films below 20 nm and by crystalline orientation for thicker films. An optimal thickness is found for PBTTT at which the mobility is maximized in unannealed films and where mobility reaches a plateau at its highest value for annealed films.  相似文献   

5.
Electron injection from the source–drain electrodes limits the performance of many n‐type organic field‐effect transistors (OFETs), particularly those based on organic semiconductors with electron affinities less than 3.5 eV. Here, it is shown that modification of gold source–drain electrodes with an overlying solution‐deposited, patterned layer of an n‐type metal oxide such as zinc oxide (ZnO) provides an efficient electron‐injecting contact, which avoids the use of unstable low‐work‐function metals and is compatible with high‐resolution patterning techniques such as photolithography. Ambipolar light‐emitting field‐effect transistors (LEFETs) based on green‐light‐emitting poly(9,9‐dioctylfluorene‐alt‐benzothiadiazole) (F8BT) and blue‐light‐emitting poly(9,9‐dioctylfluorene) (F8) with electron‐injecting gold/ZnO and hole‐injecting gold electrodes show significantly lower electron threshold voltages and several orders of magnitude higher ambipolar currents, and hence light emission intensities, than devices with bare gold electrodes. Moreover, different solution‐deposited metal oxide injection layers are compared. By spin‐coating ZnO from a low‐temperature precursor, processing temperatures could be reduced to 150 °C. Ultraviolet photoemission spectroscopy (UPS) shows that the improvement in transistor performance is due to reduction of the electron injection barrier at the interface between the organic semiconductor and ZnO/Au compared to bare gold electrodes.  相似文献   

6.
The synthesis, characterization, and field‐effect transistor (FET) properties of a new class of thieno[3,2‐b]thieno[2′,3′:4,5]thieno[2,3‐d]thiophene derivatives are described. The optical spectra of their films show the presence of stronger interactions between molecules in the solid state. Thermal analyses reveal that the three materials are thermally stable and have no phase transitions at low temperature. The crystal structures are determined, and show π‐stacked structures and intermolecular S···S contacts. These organic materials exhibit p‐type FET behavior with hole mobilities as high as 0.14 cm2 V?1 s?1 and an on/off current ratio of 106. These results indicate that thieno[3,2‐b]thieno [2′,3′:4,5]thieno[2,3‐d]thiophene, as a linear π‐conjugated system, is an effective building block for developing high‐performance organic semiconductors.  相似文献   

7.
Polyelectrolytes are promising materials as gate dielectrics in organic field‐effect transistors (OFETs). Upon gate bias, their polarization induces an ionic charging current, which generates a large double layer capacitor (10–500 µF cm?2) at the semiconductor/electrolyte interface. The resulting transistor operates at low voltages (<1 V) and its conducting channel is formed in ~50 µs. The effect of ionic currents on the performance of the OFETs is investigated by varying the relative humidity of the device ambience. Within defined humidity levels and potential values, the water electrolysis is negligible and the OFETs performances are optimum.  相似文献   

8.
Controlling contact resistance in organic field‐effect transistors (OFETs) is one of the major hurdles to achieve transistor scaling and dimensional reduction. In particular in the context of ambipolar and/or light‐emitting OFETs it is a difficult challenge to obtain efficient injection of both electrons and holes from one injecting electrode such as gold since organic semiconductors have intrinsically large band gaps resulting in significant injection barrier heights for at least one type of carrier. Here, systematic control of electron and hole contact resistance in poly(9,9‐di‐n‐octylfluorene‐alt‐benzothiadiazole) ambipolar OFETs using thiol‐based self‐assembled monolayers (SAMs) is demonstrated. In contrast to common believe, it is found that for a certain SAM the injection of both electrons and holes can be improved. This simultaneous enhancement of electron and hole injection cannot be explained by SAM‐induced work‐function modifications because the surface dipole induced by the SAM on the metal surface lowers the injection barrier only for one type of carrier, but increases it for the other. These investigations reveal that other key factors also affect contact resistance, including i) interfacial tunneling through the SAM, ii) SAM‐induced modifications of interface morphology, and iii) the interface electronic structure. Of particular importance for top‐gate OFET geometry is iv) the active polymer layer thickness that dominates the electrode/polymer contact resistance. Therefore, a consistent explanation of how SAM electrode modification is able to improve both electron and hole injection in ambipolar OFETs requires considering all mentioned factors.  相似文献   

9.
High‐performance top‐gated organic field‐effect transistor (OFET) memory devices using electrets and their applications to flexible printed organic NAND flash are reported. The OFETs based on an inkjet‐printed p‐type polymer semiconductor with efficiently chargeable dielectric poly(2‐vinylnaphthalene) (PVN) and high‐k blocking gate dielectric poly(vinylidenefluoride‐trifluoroethylene) (P(VDF‐TrFE)) shows excellent non‐volatile memory characteristics. The superior memory characteristics originate mainly from reversible charge trapping and detrapping in the PVN electret layer efficiently in low‐k/high‐k bilayered dielectrics. A strategy is devised for the successful development of monolithically inkjet‐printed flexible organic NAND flash memory through the proper selection of the polymer electrets (PVN or PS), where PVN/‐ and PS/P(VDF‐TrFE) devices are used as non‐volatile memory cells and ground‐ and bit‐line select transistors, respectively. Electrical simulations reveal that the flexible printed organic NAND flash can be possible to program, read, and erase all memory cells in the memory array repeatedly without affecting the non‐selected memory cells.  相似文献   

10.
The concept of using ion conducting membranes (50–150 μm thick) for gating low‐voltage (1 V) organic field‐effect transistors (OFETs) is attractive due to its low‐cost and large‐area manufacturing capabilities. Furthermore, the membranes can be tailor‐made to be ion conducting in any desired way or pattern. For the electrolyte gated OFETs in general, the key to low‐voltage operation is the electrolyte “insulator” (the membrane) that provides a high effective capacitance due to ionic polarization within the insulator. Hydrous ion conducting membranes are easy to process and readily available. However, the role of the water in combination with the polymeric semiconductor has not yet been fully clarified. In this work electrical and optical techniques are utilized to carefully monitor the electrolyte/semiconductor interface in an ion conducting membrane based OFET. The main findings are that 1) moisture plays a major part in the transistor operation and careful control of both the ambient atmosphere and the potential differences between the electrodes are required for stable and consistent device behavior, 2) the obtained maximum effective capacitance (5 μF cm?2) of the membrane suggests that the electric double layer is distributed over a broad region within the polyelectrolyte, and 3) electromodulation spectroscopy combined with current–voltage characteristics provide a method to determine the threshold gate voltage from an electrostatic field‐effect doping to a region of (irreversible) electrochemical perturbation of the polymeric semiconductor.  相似文献   

11.
A low contact resistance achieved on top‐gated organic field‐effect transistors by using coplanar and pseudo‐staggered device architectures, as well as the introduction of a dopant layer, is reported. The top‐gated structure effectively minimizes the access resistance from the contact to the channel region and the charge‐injection barrier is suppressed by doping of iron(III)trichloride at the metal/organic semiconductor interface. Compared with conventional bottom‐gated staggered devices, a remarkably low contact resistance of 0.1–0.2 kΩ cm is extracted from the top‐gated devices by the modified transfer line method. The top‐gated devices using thienoacene compound as a semiconductor exhibit a high average field‐effect mobility of 5.5–5.7 cm2 V?1 s?1 and an acceptable subthreshold swing of 0.23–0.24 V dec?1 without degradation in the on/off ratio of ≈109. Based on these experimental achievements, an optimal device structure for a high‐performance organic transistor is proposed.  相似文献   

12.
The organic field‐effect transistor (OFET) has proven itself invaluable as both the fundamental element in organic circuits and the primary tool for the characterization of novel organic electronic materials. Crucial to the success of the OFET in each of these venues is a working understanding of the device physics that manifest themselves in the form of electrical characteristics. As commercial applications shift to smaller device dimensions and structure/property relationships become more refined, the understanding of these phenomena become increasingly critical. Here, we employ high‐performance, elastomeric, photolithographically patterned single‐crystal field‐effect transistors as tools for the characterization of short‐channel effects and bias‐dependent parasitic contact resistance and field‐effect mobility. Redundant characterization of devices at multiple channel lengths under a single crystal allow the morphology‐free analysis of these effects, which is carried out in the context of a device model previously reported. The data show remarkable consistency with our model, yielding fresh insight into each of these phenomena, as well as confirming the utility of our FET design.  相似文献   

13.
The development of organic transistors for flexible electronics requires the understanding of device behavior upon the application of strain. Here, a comprehensive study of the effect of polymer‐dielectric and semiconductor chemical structure on the device performance under applied strain is reported. The systematic change of the polymer dielectric results in the modulation of the effects of strain on the mobility of organic field‐effect transistor devices. A general method is demonstrated to lower the effects of strain in devices by covalent substitution of the dielectric surface. Additionally, the introduction of a hexyl chain at the peripheries of the organic semiconductor structure results in an inversion of the effects of strain on device mobility. This novel behavior may be explained by the capacitative coupling of the surface energy variations during applied strain.  相似文献   

14.
Organic semiconductors have sparked interest as flexible, solution processable, and chemically tunable electronic materials. Improvements in charge carrier mobility put organic semiconductors in a competitive position for incorporation in a variety of (opto‐)electronic applications. One example is the organic field‐effect transistor (OFET), which is the fundamental building block of many applications based on organic semiconductors. While the semiconductor performance improvements opened up the possibilities for applying organic materials as active components in fast switching electrical devices, the ability to make good electrical contact hinders further development of deployable electronics. Additionally, inefficient contacts represent serious bottlenecks in identifying new electronic materials by inhibiting access to their intrinsic properties or providing misleading information. Recent work focused on the relationships of contact resistance with device architecture, applied voltage, metal and dielectric interfaces, has led to a steady reduction in contact resistance in OFETs. While impressive progress was made, contact resistance is still above the limits necessary to drive devices at the speed required for many active electronic components. Here, the origins of contact resistance and recent improvement in organic transistors are presented, with emphasis on the electric field and geometric considerations of charge injection in OFETs.  相似文献   

15.
We report on the use of polymer fibers for large‐area soft nanolithography on organic and inorganic surfaces with 50 nm resolution. The morphology of fibers and of the corresponding patterned gap is investigated, demonstrating a lateral dimension downscaling of up to nine times, which greatly increases the achieved resolution during pattern transfer. In this way, we realize poly­mer field effect transistors with channel length and width as low as 250 nm that are expected to show transistor transition frequency up to a few MHz, and are thus exploitable as low‐cost radio‐frequency identification devices.  相似文献   

16.
Limited charge carrier mobility of organic semiconductors, especially for solution‐processed polymer thin films, has typically relegated organic electronics to low‐frequency operation. Nevertheless, thanks to a steady increase in electronic properties of organics, much higher operation frequencies are feasible, suggesting a possible and appealing scenario where lightweight, cost‐effective, and conformable electronics can integrate both sensing and radio‐frequency transmitting functionalities, which are the key to unlock pervasive networks of distributed sensors revolutionizing human–environment interaction. Few years ago, it was suggested that gigahertz (GHz) field‐effect transistors could be achievable even with solution‐based processes. This was the basis for the European Research Council project high‐frequency printed and direct‐written organic‐hybrid integrated circuits (HEROIC), which in the last few years investigated such unexplored path. Here, the authors report their vision toward the achievement of radio‐frequency organic electronics mainly with solution‐based and scalable processes, with reference to the experience of the HEROIC project and to some of the most notable literature examples. The authors show that the achievement of solution‐processable organic field‐effect transistors with GHz operation is indeed feasible, but requires considering a carefully revised scenario in which the main role is played by charge injection, together with the geometric overlap, the capacitive parasitism associated to fringing and some constraints on the dielectric layer thickness.  相似文献   

17.
Here, a highly crystalline and self‐assembled 6,13‐bis(triisopropylsilylethynyl) pentacene (TIPS‐Pentacene) thin films formed by simple spin‐coating for the fabrication of high‐performance solution‐processed organic field‐effect transistors (OFETs) are reported. Rather than using semiconducting organic small‐molecule–insulating polymer blends for an active layer of an organic transistor, TIPS‐Pentacene organic semiconductor is separately self‐assembled on partially crosslinked poly‐4‐vinylphenol:poly(melamine‐co‐formaldehyde) (PVP:PMF) gate dielectric, which results in a vertically segregated semiconductor‐dielectric film with millimeter‐sized spherulite‐crystalline morphology of TIPS‐Pentacene. The structural and electrical properties of TIPS‐Pentacene/PVP:PMF films have been studied using a combination of polarized optical microscopy, atomic force microscopy, 2D‐grazing incidence wide‐angle X‐ray scattering, and secondary ion mass spectrometry. It is finally demonstrated a high‐performance OFETs with a maximum hole mobility of 3.40 cm2 V?1 s?1 which is, to the best of our knowledge, one of the highest mobility values for TIPS‐Pentacene OFETs fabricated using a conventional solution process. It is expected that this new deposition method would be applicable to other small molecular semiconductor–curable polymer gate dielectric systems for high‐performance organic electronic applications.  相似文献   

18.
In the past few decades, mainly two kind of organic semiconductors, namely small molecules and polymers, have been dealt with. It turns out that the difference between these two categories in terms of charge carrier transport arises from the potentially different morphologies and the molecular packing. There are many studies showing the effect of the chemical structure on the electronic properties. However, in this study, the focus is on the role of processing conditions which is found to be of at least equal importance. To study a range of morphologies and packing in as similar molecules, two systems prepared by “Click”‐type chemistry are chosen, with the major difference between them being the replacement of a flat unit with one that introduces a slight twist to the aromatic skeleton. Through AFM and X‐ray studies, it is shown that the molecule with the potentially flat geometry can exhibit a high degree of π–π stacking, leading to morphologies ranging from polycrystalline to single crystals while the other is always in the amorphous film state. The transport properties are compared using organic field effect transistor (OFETs) in both top and bottom contact configurations.  相似文献   

19.
Printing semiconductor devices under ambient atmospheric conditions is a promising method for the large‐area, low‐cost fabrication of flexible electronic products. However, processes conducted at temperatures greater than 150 °C are typically used for printed electronics, which prevents the use of common flexible substrates because of the distortion caused by heat. The present report describes a method for the room‐temperature printing of electronics, which allows thin‐film electronic devices to be printed at room temperature without the application of heat. The development of π‐junction gold nanoparticles as the electrode material permits the room‐temperature deposition of a conductive metal layer. Room‐temperature patterning methods are also developed for the Au ink electrodes and an active organic semiconductor layer, which enables the fabrication of organic thin‐film transistors through room‐temperature printing. The transistor devices printed at room temperature exhibit average field‐effect mobilities of 7.9 and 2.5 cm2 V?1 s?1 on plastic and paper substrates, respectively. These results suggest that this fabrication method is very promising as a core technology for low‐cost and high‐performance printed electronics.  相似文献   

20.
The relationship between the performance characteristics of organic field‐effect transistors (OFETs) with 2,5‐bis(4‐biphenylyl)bithiophene/copper hexadecafluorophthalocyanine (BP2T/F16CuPc) heterojunctions and the thickness of the BP2T bottom layer is investigated. Three operating modes (n‐channel, ambipolar, and p‐channel) are obtained by varying the thickness of the organic semiconductor layer. The changes in operating mode are attributable to the morphology of the film and the heterojunction effect, which also leads to an evolution of the field‐effect mobility with increasing film thickness. In BP2T/F16CuPc heterojunctions the mobile charge carriers accumulate at both sides of the heterojunction interface, with an accumulation layer thickness of ca. 10 nm. High field‐effect mobility values can be achieved in continuous and flat films that exhibit the heterojunction effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号