首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Light‐weight, power‐free mechanochromic sensors that can change and record the reflective color depending on the magnitude and rate of the applied force are fabricated from inverse opals by infiltrating the colloidal crystals of silica particles with uncrosslinked SU‐8, followed by removal of the colloidal templates. The mechanical sensing range of the materials is high, 17.6–20.4 MPa. Due to elastoplastic deformation of the SU‐8 films, the deformed structures and thus colors can be locked after the removal of the load, therefore establishing a quantitative relationship between the mechanical force and optical responses. In comparison, mechanochromic photonic gels reported in the literature typically detect force in the range of 10–100 kPa; once the load is removed, the structure and color return back to the original ones. The mechanochromic sensors are highly sensitive: the ratio of shift in the stopband wavelength to the change in applied strain is up to 5.7 nm per percent, the highest among literature. Comparison of finite element simulations with experiments confirms the elastoplastic deformation of the films and highlights that reconfiguration of pore shape under compression plays a key role in the mechanochromic response.  相似文献   

2.
Smart interactive electronic devices can dynamically respond to and visualize environmental stimuli. Inspired by the rapid color changes of natural creatures, an interactive electronic fiber sensor with high stretchability and tunable coloration is presented. It is based on an ingenious multi‐sheath design on a piezoresistive electronic fiber coupled with a mechanochromic photonic crystal microtubule. It has the unique capabilities of sensing and visualizing its deformation simultaneously, by reconstructing conductive paths and regulating the lattice spacing of the photonic sheath. In particular, it exhibits dynamic color switching spanning the full visible region (from red to blue), fast optical/electrical response (≈80 ms), and a large working range (0–200%), allowing its application as a user‐interactive sensor for dynamically monitoring large joint movements and muscle microvibrations of the human body in real time. This investigation provides a general platform for emerging interactive devices, which are promising for applications in wearable electronics, human–machine interactions, and intelligent robots.  相似文献   

3.
High quality opal‐like photonic crystals containing graphene are fabricated using evaporation‐driven self‐assembly of soft polymer colloids. A miniscule amount of pristine graphene within a colloidal crystal lattice results in the formation of colloidal crystals with a strong angle‐dependent structural color and a stop band that can be reversibly shifted across the visible spectrum. The crystals can be mechanically deformed or can reversibly change color as a function of their temperature, hence their sensitive mechanochromic and thermochromic response make them attractive candidates for a wide range of visual sensing applications. In particular, it is shown that the crystals are excellent candidates for visual strain sensors or integrated time‐temperature indicators which act over large temperature windows. Given the versatility of these crystals, this method represents a simple, inexpensive, and scalable approach to produce multifunctional graphene infused synthetic opals and opens up exciting applications for novel solution‐processable nanomaterial based photonics.  相似文献   

4.
Flexible self-healing thermal management devices are increasingly in demand due to their high flexibility, low driving voltage, and excellent stability of thermal property. In this paper, the design of mechanochromic self-healing thermal management devices is reported based on photonic vitrimer through self-healing dynamic covalent bond. A series of new photonic vitrimers i first prepared by dynamic disulfide covalent bond and PS@SiO2 photonic crystals. The resulting photonic vitrimer exhibits bright structural colors, large tensile strain (>1000%), high mechanical strength (>10 MPa) and self-healing ability (>95% efficiency). More importantly, the structural color remains constant after 10000 stretching/releasing cycles, demonstrating excellent mechanical stability, creep-resistance, and durability. Taking advantage of the above features, a novel mechanochromic flexible wireless thermal management (MFW) device is developed by semi-embedding the photonic vitrimer in a thermally conductive carbon nanotube film and then integrating it with a Bluetooth module and a control chip. Interestingly, the MFW device exhibits mechanochromic property, fast thermal response, low driving voltage (103 °C, at 3 V), and precise temperature control. Notably, the device even remains electrothermal performance (105 °C) after self-healing. This work provides new insight into the self-healing photonic materials, and the device shows promising applications in wearable electronics, vitro physiotherapy, and personal heating.  相似文献   

5.
Supramolecular gels consisting of trivalent polyisobutylene and bivalent poly(ethylene oxide) are generated. Strong hydrogen bonding interactions, affixed to the end‐group moieties of the respective polymers (binding constant Kassn = 105 M –1), serve as molecular glue, leading to the formation of weak gels. Two different gels were prepared: one, with a short telechelic poly(ethylene glycol) (PEG) segment (gel A), and one with a longer PEG segment (number‐average molecular weight Mn = 2000 g mol–1) (gel B). Both gels show a significant increase in viscosity upon mixing of the two polymeric components, with a lag time of several minutes, indicative of nucleation mechanisms as the formation principle. However, only gel A displays classical gel‐like behavior, with a loss modulus G′ larger than the storage modulus G″ after formation. Both gels display microphase‐separated behavior with a spacing between 4–5 nm as probed via small‐angle X‐ray scattering (SAXS) and transmission electron microscopy (TEM) measurements. The incorporation of magnetic nanoparticles (Fe2O3; radius r = 3.5 nm) is successfully achieved, generating new magnetic gels with strongly thermoresponsive properties, displaying a strong temperature‐dependent release profile of included dye molecules. Magnetic measurements indicate a superparamagnetic behavior of the incorporated nanoparticles, prospecting the application as magneto‐sensitive delivery gels for pharmaceutical purposes.  相似文献   

6.
Cephalopods, such as squid, cuttlefish, and octopuses, use an array of responsive absorptive and photonic dermal structures to achieve rapid and reversible color changes for spectacular camouflage and signaling displays. Challenges remain in designing synthetic soft materials with similar multiple and dynamic responsivity for the development of optical sensors for the sensitive detection of mechanical stresses and strains. Here, a high dynamic range mechano‐imaging (HDR‐MI) polymeric material integrating physical and chemical mechanochromism is designed providing a continuous optical read‐out of strain upon mechanical deformation. By combining a colloidal photonic array with a mechanically responsive dye, the material architecture significantly improves the mechanochromic sensitivity, which is moreover readily tuned, and expands the range of detectable strains and stresses at both microscopic and nanoscopic length scales. This multi‐functional material is highlighted by creating detailed HDR mechanographs of membrane deformation and around defects using a low‐cost hyperspectral camera, which is found to be in excellent agreement with the results of finite element simulations. This multi‐scale approach to mechano‐sensing and ‐imaging provides a platform to develop mechanochromic composites with high sensitivity and high dynamic mechanical range.  相似文献   

7.
Invisible photonic prints shown by deformation are prepared by soaking the mechanochromic photonic paper with crosslinker (PEGDA) and subsequently crosslinking part of the paper through a photo lithography process. The key point of this new technique is creating patterns and background with very close photonic structures but different mechanochromic capabilities, so that the invisible photonic patterns in relaxed state can be revealed under deformation due to the nonuniform change in photonic structure. Based on the relationship between crosslinking level and the reflection changes during deformation, one can conclude that a low crosslinking level favors the hiding of invisible patterns and a high crosslinking level favors the showing of patterns. The as‐prepared samples can instantly and reversibly show the patterns by deformation and hide them by relaxation for many times, and the encapsulation by PDMS rubber prolongs its life time and enhances its durability in practical usages. The current printing technique is capable of creating invisible photonic prints in both macroscale and microscale range, which makes them potentially useful for security and antifraud applications in daily life.  相似文献   

8.
The photonic properties of artificial opals directly depend on the atmosphere (air, usually) filling the voids in the constitutive dielectric material. Here, a novel use of bare artificial silica opals (direct and inverse) is presented for straightforward water dew detection, in which the stop‐band exhibits a drastic change upon soaking of the voids. In particular, the opal reflectance drops to one‐fifth within 100 ms scale, so the fading of the opal structural color upon dew formation is evident for the naked eye. Moreover, the stop‐band redshifts up to 60 nm, leading, by convenient selection of the stop‐band wavelength, to perceptible color change. Due to the porous nature of the opal, the dew formation in the opal voids is shifted to lower saturation pressures compared to an open system. This is experimentally demonstrated by controlled reduction of the pores size, so that the advancement of the dew point temperature is tuned between 2.5° and 6.3°. The outstanding color change together with the easy fabrication (without postprocessing) and selectable size (from miniature to large‐area) make artificial opals cost‐effective and versatile visual dew detectors. The tunable advance of the opal response over the actual dew point is practical to adequately anticipate and prevent dew formation in neighboring surfaces. Furthermore, opals might serve as useful probe systems for the study of fundamental phenomena such as condensation of vapors in porous and particulate media.  相似文献   

9.
Colloidal photonic crystals and materials derived from colloidal crystals can exhibit distinct structural colors that result from incomplete photonic band gaps. Through rational materials design, the colors of such photonic crystals can be tuned reversibly by external physical and chemical stimuli. Such stimuli include solvent and dye infiltration, applied electric or magnetic fields, mechanical deformation, light irradiation, temperature changes, changes in pH, and specific molecular interactions. Reversible color changes result from alterations in lattice spacings, filling fractions, and refractive index of system components. This review article highlights the different systems and mechanisms for achieving tunable color based on opaline materials with close‐packed or non‐close‐packed structural elements and inverse opal photonic crystals. Inorganic and polymeric systems, such as hydrogels, metallopolymers, and elastomers are discussed.  相似文献   

10.
Efficient and large scale printing of photonic crystal patterns with multicolor, multigrayscale, and fine resolution is highly desired due to its application in smart prints, sensors, and photonic devices. Here, an electric‐field‐assisted multicolor printing is reported based on electrically responsive and photocurable colloidal photonic crystal, which is prepared by supersaturation‐induced self‐assembly of SiO2 particles in the mixture of propylene carbonate (PC) and trimethylolpropane ethoxylate triacrylate (ETPTA). This colloidal crystal suspension, named as E‐ink, has tunable structural color, controllable grayscale, and instantly fixable characteristics at the same time because the SiO2/ETPTA‐PC photonic crystal has metastable and reversible assembly as well as polymerizable features. Lithographical printing with photomask and maskless pixel printing techniques are developed respectively to efficiently prepare multicolor and high‐resolution photonic patterns using a single‐component E‐ink.  相似文献   

11.
Hydrogel‐based soft mechanochromic materials that display colorimetric changes upon mechanical stimuli have attracted wide interest in sensors and display device applications. A common strategy to produce mechanochromic hydrogels is through photonic structures, in which mechanochromism is obtained by strain‐dependent diffraction of light. Here, a distinct concept and simple fabrication strategy is presented to produce luminescent mechanochromic hydrogels based on a double‐layer design. The two layers contain different luminescent species—carbon dots and lanthanide ions—with overlapped excitation spectra and distinct emission spectra. The mechanochromism is rendered by strain‐dependent transmittance of the top‐layer, which regulates light emission from the bottom‐layer to control the overall hydrogel luminescence. An analytical model is developed to predict the initial luminescence color and color changes as a function of uniaxial strain. Finally, this study demonstrates proof‐of‐concept applications of the mechanochromic hydrogel for pressure and contact force sensors as well as for encryption devices.  相似文献   

12.
A method is presented for predicting and precisely controlling the structure of photonic crystals fabricated using sacrificial‐layer atomic layer deposition. This technique provides a reliable method for fabrication of high‐quality non‐close‐packed inverse shell opals with large static tunability and precise structural control. By using a sacrificial layer during opal infiltration, the inverse‐opal pore size can be increased with sub‐nanometer resolution and without distorting the lattice to allow for a high degree of dielectric backfilling and increased optical tunability. For a 10 % sacrificial layer, static tunability of 80 % is predicted for the inverse opal. To illustrate this technique, SiO2 opal templates were infiltrated using atomic layer deposition of ZnS, Al2O3, and TiO2. Experimentally, a static tunability of over 600 nm, or 58 %, was achieved and is well described by both a geometrical model and a numerical‐simulation algorithm. When extended to materials of higher refractive index, this method will allow the facile fabrication of 3D photonic crystals with optimized photonic bandgaps.  相似文献   

13.
A photonic crystal laser that is tunable throughout the visible in three‐dimensionally switchable directions is demonstrated. This photo‐pumped laser utilizes a dye‐infiltrated, single‐crystal SiO2 opal having incomplete bandgaps. Our results support a gap‐state‐enhanced distributed feedback mechanism for lasing. Three different types of wavelength tunability are demonstrated, each applicable over a different frequency range and involving either single or multiple bandgaps. The many independent laser cavities that exist in one photonic crystal are demonstrated by simultaneously obtaining lasing in various colors and directions from an opal crystal. The observation of characteristic laser emission lines provides a new spectroscopy for characterizing intra‐gap photonic states, which may be useful for developing the photonic crystal analogues of electronic circuitry.  相似文献   

14.
Polystyrene‐block‐poly(2‐vinyl pyridine) (PS‐b‐P2VP) block copolymer photonic gels are fabricated that exhibit controllable optical hysteresis in response to a cyclic pH sweep. The optical hysteresis is tuned by controlling the ion‐pairing affinity between various anions and the protonated pyridinium ions on the P2VP block, which is highly dependent on the hydration energy of the ions, the dielectric constant of the solvent, and the ionic strength of the medium. The pH coercivity defining the magnitude of hysteresis of the photonic gels could be varied from 0.26 to 7.4. Photonic gel films with strong optical hysteresis can serve as wet photonic memory films where information can be cyclically recorded and erased at least 15 times and maintained for at least 96 h. The memory colors can be further tuned by selection of the copolymer molecular weight.  相似文献   

15.
Metastable γ-Bi2O3 were successfully prepared via a controllable, facile and mild solution precipitation synthesis method in ethylene glycol-water mixed solvent systems without adding surfactant or template agents, at 80 ℃ and ambient atmospheric pressure in 40 min. Ethylene glycol can facilitate the nucleation of γ-Bi2O3 as only α-Bi2O3 was observed in its absence. And by adjusting ethylene glycol (EG) volume fraction, metastable γ-Bi2O3 submicro hexahedrons, tetrahedrons, polyhedrons and three-dimensional self-assembled hierarchical flower-like architectures were obtained respectively. SEM, XRD, and EDS were used to characterize the microstructures. The flower-like metastable γ-Bi2O3 architectures with diameter of several micrometers were 3D self-assembled from tetrahedrons step by step. The formation of the hierarchical flower-like architectures was due to the controlling of crystal growth kinetics and the guidance of self-assembly approach by ethylene glycol. The possible formation mechanism of these metastable γ-Bi2O3 architectures was also discussed. And compared with α-Bi2O3, β-Bi2O3, δ-Bi2O3, and γ-Bi2O3 through other means reported previously, the as-prepared γ-Bi2O3 in this paper possesses more excellent optical performance.  相似文献   

16.
Photo‐tunable photonic crystals were prepared from three dimensional (3D) colloidal crystal templates using a photoresponsive azopolymer. For the preparation of azopolymer infiltrated photonic crystals, silica colloidal crystals were fabricated by gravity sedimentation, a self‐assembly technique. The interstitial voids between colloidal particles were filled with azopolymer and azopolymer inverse opals were produced by treatment with aqueous hydrofluoric acid. These photonic crystals exhibited stop bands in their transmission spectra measured in the normal incidence to the (111) plane of face centered cubic (fcc). The photonic bandgap of the azopolymer infiltrated opal and inverse opal could be controlled by the refractive index change due to the photoinduced orientation of azobenzene chromophores. When the azopolymer photonic crystals were irradiated with linearly polarized light, their bandgap positions were shifted to shorter wavelength regions with increasing irradiation time. This behavior experimentally produced a photoinduced orientation of the azobenzene groups in parallel with the incidence of the excitation light. Through such an out‐of‐plane orientation of azo chromophores, parallel to the [111] fcc crystallographic axis, the effective refractive index of the photonic crystal medium was decreased. Therefore, a blue‐shift in bandgap positions was consequently induced with 20–40 nm tuning ranges. The out‐of‐plane orientation was confirmed by angular resolved absorption spectral measurements.  相似文献   

17.
A mechanochromic, programmable, cholesteric liquid crystalline elastomer (CLCE) is fabricated, and after straining, resulting in a blue shift through the visible spectrum, is returned to its initial shape and color upon heating through its isotropic phase transition. Light initiated, radical‐mediated, addition fragmentation chain transfer (AFT), facilitate permanent programming or erasure of thermoreversible shape and color by relaxing stress imparted on the strained network through reversible bond exchange. Thermoreversible strain is coupled with reversible color change and can be made permanent at any desired strain by light exposure and corresponding AFT activation, temporarily restoring nearly initial shape and color upon heating. The optical characteristics and photonic structure, inherently linked to the network, are measured as a function of strain, to confirm the reflection notch narrowing indicating that prepolymerization alignment via shearing is poor thereby causing a broad spectrum of reflected light that narrows when the material is stretched. Beyond programming a new shape and color, the reflection notch is erased and separately, photopatterned to achieve dynamic color schemes that are toggled with heating and cooling, similar to that of a chameleon's camouflaging technique that has the ability to manipulate multiple colors in a single material, also with use for strain mapping.  相似文献   

18.
Structural coloration provides unique features over chemical coloration, such as nonfading, color tunability, and high color brightness, rendering it useful in various optical applications. To develop the structural colors, two different mechanisms of coloration–photonic bandgap (PBG) and surface plasmon resonance (SPR)–have been separately utilized. In this work, a new method is suggested to create structurally colored micropatterns by regioselectively employing SPR in a single film of inverse opal with PBG. The inverse opals are prepared by thermal embedding of opal into a negative photoresist and its subsequent removal. The inverse opals have a hexagonal array of open pores on the surface which serves as a template to make SPR‐active nanostructures through a directional deposition of gold, a perforated gold film and an array of curved gold disks are formed. With a shadow mask lithographically prepared, the gold is regioselectively deposited on the surface of the inverse opal, which results in two distinct regions of gold‐free inverse opal with PBG and gold nanostructure with SPR. As PBG and SPR develop their own structural colors respectively, the resultant micropatterns exhibit pronounced dual colors. More importantly, the micropatterns show the distinguished optical response for evaporation of volatile liquids that occupy the pores.  相似文献   

19.
Exceptional challenges have confronted the rational design of colorimetric sensors for saturated aliphatic hydrocarbons (SAHCs). The main reasons for this difficulty are the extremely nonpolar nature of these targets and their lack of functional groups that can interact with probes. By taking advantage of a mechanochromic conjugated polydiacetylene (PDA) and the hydrocarbon‐induced swelling properties of polydimethylsiloxane (PDMS), a sensor film that enables simple, colorimetric differentiation between a variety of C5 to C14 aliphatic hydrocarbons is fabricated. The unprecedented PDA–PDMS composite sensor undergoes a blue‐to‐red colorimetric transition on a timescale that is dependent on the chain length of the hydrocarbon target. In addition, the development of the red color is directly proportional to the swelling ratio of the film. This straightforward approach enables naked‐eye differentiation between n‐pentane and n‐heptane. The versatility of the sensor system is demonstrated by using it for the colorimetric determination of kerosene in adulterated diesel oil. Finally, the observation that a PDA microcrystal in the film undergoes significant expansion and tearing in concert with a blue‐to‐red colorimetric transition during the swelling process provides direct evidence for the mechanism for the mechanochromic behavior of the PDA.  相似文献   

20.
The colorimetric stability upon thermal stress of a series of conjugated polymer supramolecules prepared from 10,12‐docosadiyndioic acid (DCDDA)‐derived diacetylene monomers has been explored. Polydiacetylenes obtained from DCDDA‐bis‐mBzA 3 , containing m‐carboxyphenylanilido groups at the both ends of the monomer, were observed to be highly colorimetrically stable upon thermal stimulation. The blue color of a solution containing these polydiacetylene vesicles remains unchanged even when the vesicles were subjected to boiling water. The unusual colorimetric stability is further demonstrated by the observation that blue color persists until vesicles in ethylene glycol are heated to 140 °C. The nature of this unusual thermal stability was elucidated by using polydiacetylene supramolecules, prepared from analogs of DCDDA‐bis‐mBzA 3 . The presence of internal amide groups as well as aromatic interactions was found to be essential for the high colorimetric stability of the polydiacetylene supramolecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号