首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study reports a hybrid of two metal‐organic semiconductors that are based on organic charge transfer complexes of 7,7,8,8‐tetracyanoquinodimethane (TCNQ). It is shown that the spontaneous reaction between semiconducting microrods of CuTCNQ with Ag+ ions leads to the formation of a CuTCNQ/AgTCNQ hybrid, both in aqueous solution and acetonitrile, albeit with completely different reaction mechanisms. In an aqueous environment, the reaction proceeds by a complex galvanic replacement (GR) mechanism, wherein in addition to AgTCNQ nanowires, Ag0 nanoparticles and Cu(OH)2 crystals decorate the surface of CuTCNQ microrods. Conversely, in acetonitrile, a GR mechanism is found to be thermodynamically unfavorable and instead a corrosion‐recrystallization mechanism leads to the decoration of CuTCNQ microrods with AgTCNQ nanoplates, resulting in a pure CuTCNQ/AgTCNQ hybrid metal‐organic charge transfer complex. While hybrids of two different inorganic semiconductors are regularly reported, this report pioneers the formation of a hybrid involving two metal‐organic semiconductors that will expand the scope of TCNQ‐based charge transfer complexes for improved catalysis, sensing, electronics, and biological applications.  相似文献   

2.
We report the deterministic growth of individual single‐crystal organic semiconductor nanowires of silver–tetracyanoquinodimethane (Ag–TCNQ) with high yield (>90%) by a vapor–solid chemical reaction process. Ag–metal films or patterned dots deposited onto substrates serve as chemical reaction centers and are completely consumed during the growth of the individual or multiple nanowires. Selective‐area electron diffraction (SAED) revealed that the Ag–TCNQ nanowires grow preferentially along the strong ππ stacking direction of Ag–TCNQ molecules. The vapor–solid chemical reaction process described here permits the growth of organic nanowires at lower temperatures than chemical vapor deposition (CVD) of inorganic nanowires. The single‐crystal Ag–TCNQ nanowires are shown to act as memory switches with high on/off ratios, making them potentially useful in optical storage, ultrahigh‐density nanoscale memory, and logic devices.  相似文献   

3.
Universal strategies for synthesizing one‐dimensional organic nanomaterials are of fundamental importance in the development of more flexible, cheaper and lighter electronics. Charge‐transfer (CT) complexes, the major kind of organic conductors, are in the long‐term attractive materials owing to their unique crystal structures and conductive properties. In this article, a general strategy for the synthesis of CT complex micro/nanowires based on the localized nanoelectrochemistry using tiny carbon nanotube (CNT) electrodes is presented. This strategy is successfully demonstrated over 12 typical CT complexes, and a general rule for the preparation of various kinds of CT complex micro/nanowires is summarized. The CT complex micro/nanowires thus synthesized have high aspect ratios and long lengths as compared with traditional macroscopic planar electrodes, originating from the one‐dimensional structural feature with fewer or no defects and the ultrasmall surface area of the CNT. This work provides a more versatile material basis for the fundamental and application studies of low‐dimensional organic conductor materials.  相似文献   

4.
The electronic structure of a semiconducting mixed-stack charge transfer (CT) complex composed of a 2,7-dialkyl[1]benzothieno[3,2-b][1] benzothiophene (diC8-BTBT) electron donor and a tetracyanoquinodimethane (TCNQ) electron acceptor, (diC8-BTBT)(TCNQ), was studied by ultraviolet photoemission spectroscopy and inverse photoemission spectroscopy. Compared with its components, the frontier electronic states observed for the (diC8-BTBT)(TCNQ) complex showed a large stabilization that originates from the reconstruction of electronic states by intermolecular donor-acceptor CT interactions. We discuss how the frontier electronic states of the complex are formed from those of the individual component molecules, and clarify the origin of the air-stable n-type organic field-effect transistor characteristics that the material exhibits when it is used as a channel semiconductor.  相似文献   

5.
采用共沉积技术制备了AgTCNQ薄膜,并进行了红外、紫外光谱表征.利用微电子工艺制备了基于AgTCNQ薄膜的有机双稳态器件.研究发现,Ti/AgTCNQ/Au双稳态器件具有可逆、可重复的开关存储特性.将器件从初始的高阻态转变为低阻态的正向开关阈值电压为3.8~5V,将低阻态转变为高阻态的负向阈值电压仅为-3.5~-4.4V,与通常的CuTCNQ器件相比较小.这种基于AgTCNQ交叉结构的有机双稳态器件可应用于非易失性有机存储器.  相似文献   

6.
采用共沉积技术制备了AgTCNQ薄膜,并进行了红外、紫外光谱表征.利用微电子工艺制备了基于AgTCNQ薄膜的有机双稳态器件.研究发现,Ti/AgTCNQ/Au双稳态器件具有可逆、可重复的开关存储特性.将器件从初始的高阻态转变为低阻态的正向开关阈值电压为3.8~5V,将低阻态转变为高阻态的负向阈值电压仅为-3.5~-4.4V,与通常的CuTCNQ器件相比较小.这种基于AgTCNQ交叉结构的有机双稳态器件可应用于非易失性有机存储器.  相似文献   

7.
Simple and facile processes to produce silver nanoparticles deposited layered double hydroxide (Ag‐LDH) coatings are reported. High quality nanoporous LDH coatings are obtained under hydrothermal conditions via an improved in situ growth method by immersing the substrates in LDH suspensions after removal of free electrolytes. Different types of substrates including metal, ceramics, and glass with planar and non‐planar surfaces can all be coated with the oriented LDH films with strong adhesion. The pore size can be easily tuned by changing the metal:NaOH ratio during the precipiation process of LDH precursors. In the presence of LDH coatings, silver ions can be readily reduced to metallic silver nanoparticles (Ag NPs) in aqueous solutions. The resulting Ag NPs are incorporated evenly on LDH surface. The Ag‐LDH coating exhibits excellent and durable antimicrobial activities against both Gram‐negative (E. Coli and P. Aeruginosa) and Gram‐positive (B. Subtilis and S. Aureus) bacteria. Even at the 4th recycled use, more than 99% of all types of bacteria can be killed. Moreover, the Ag‐LDH coating can also effectively inhibit the bacterial growth and prevent the biofilm formation in the nutrient solutions. These newly designed Ag‐LDH coatings may offer a promising antimicrobial solution for clinical and environmental applications.  相似文献   

8.
The formation of the conductive TTF‐TCNQ (tetrathiafulvalene–tetracyanoquinodimethane) charge‐transfer salt via rupture of microencapsulated solutions of its individual components is reported. Solutions of TTF and TCNQ in various solvents are separately incorporated into poly(urea‐formaldehyde) core–shell microcapsules. Rupture of a mixture of TTF‐containing microcapsules and TCNQ‐containing microcapsules results in the formation of the crystalline salt, as verified by FTIR spectroscopy and powder X‐ray diffraction. Preliminary measurements demonstrate the partial restoration of conductivity of severed gold electrodes in the presence of TTF‐TCNQ derived in situ. This is the first microcapsule system for the restoration of conductivity in mechanically damaged electronic devices in which the repairing agent is not conductive until its release.  相似文献   

9.
We report that solution-based treatment of Cu electrodes with strong electron acceptor molecules significantly decreases the contact resistance towards organic semiconductors, which is advantageous for applications such as organic field-effect transistors (OFETs). Spin-coating solutions of tetracyanoquinodimethane (TCNQ) or tetrafluoro-tetracyanoquinodimethane (F4-TCNQ) onto Cu electrodes results in strongly chemisorbed acceptor (sub-)monolayers, which increase the electrode work function from 4.5 eV (bare Cu) up to 5.2 eV (F4-TCNQ-treated) even in air, as evidenced by X-ray photoelectron spectroscopy and photoelectron yield spectroscopy. The use of such modified electrodes in flexible OFETs with poly(3-hexylthiophene)-dithienyltetrafluorobenzene (P3HT-TFT) as semiconductor lead to a twofold increase of the on-current in the saturation regime and a decrease of the threshold voltage from ?20 V (bare Cu) to ?7 V (F4-TCNQ-treated). These results confirm that this simple solution-based process is viable for lowering organic/metal contact resistances in organic electronic devices.  相似文献   

10.
Fabrication of organic field‐effect transistors (OFETs) using a high‐throughput printing process has garnered tremendous interest for realizing low‐cost and large‐area flexible electronic devices. Printing of organic semiconductors for active layer of transistor is one of the most critical steps for achieving this goal. The charge carrier transport behavior in this layer, dictated by the crystalline microstructure and molecular orientations of the organic semiconductor, determines the transistor performance. Here, it is demonstrated that an inkjet‐printed single‐droplet of a semiconducting/insulating polymer blend holds substantial promise as a means for implementing direct‐write fabrication of organic transistors. Control of the solubility of the semiconducting component in a blend solution can yield an inkjet‐printed single‐droplet blend film characterized by a semiconductor nanowire network embedded in an insulating polymer matrix. The inkjet‐printed blend films having this unique structure provide effective pathways for charge carrier transport through semiconductor nanowires, as well as significantly improve the on‐off current ratio and the environmental stability of the printed transistors.  相似文献   

11.
Fluorinated molecule 2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane (F4‐TCNQ) and its derivatives have been used in polymer:fullerene solar cells primarily as a dopant to optimize the electrical properties and device performance. However, the underlying mechanism and generality of how F4‐TCNQ affects device operation and possibly the morphology is poorly understood, particularly for emerging nonfullerene organic solar cells. In this work, the influence of F4‐TCNQ on the blend film morphology and photovoltaic performance of nonfullerene solar cells processed by a single halogen‐free solvent is systematically investigated using a set of morphological and electrical characterizations. In solar cells with a high‐performance polymer:small molecule blend FTAZ:IT‐M, F4‐TCNQ has a negligibly small effect on the molecular packing and surface characteristics, while it clearly affects the electronic properties and mean‐square composition variation of the bulk. In comparison to the control devices with an average power conversion efficiency (PCE) of 11.8%, inclusion of a trace amount of F4‐TCNQ in the active layer has improved device fill factor and current density, which has resulted into a PCE of 12.4%. Further increase in F4‐TCNQ content degrades device performance. This investigation aims at delineating the precise role of F4‐TCNQ in nonfullerene bulk heterojunction films, and thereby establishing a facile approach to fabricate highly optimized nonfullerene solar cells.  相似文献   

12.
As an indispensable aspect of emerging flexible optoelectronics, flexible transparent electrodes, especially those comprised of metal nanowires, have attracted great attentions recently. Welding the nanowire junctions is an effective strategy for reducing the sheet resistance and improving the operational stability of flexible nanowire electrode in practical applications. Herein, a simple alcohol‐based solution approach is proposed to weld crossed silver nanowires by chemically growing silver “solder” at the junctions of the nanowires, forming transparent silver nano‐network electrodes with improved electrical conductivity and operational stability. Remarkably, silver nano‐networks can be rapidly formed by this simple approach under ambient condition and room temperature, requiring no assistance from heat, light, electrical current, or mechanical pressure. Furthermore, our results show that the nano‐network electrode formed from large diameter nanowires offers a better operational stability, whose trend is opposite to that of the untreated electrodes. To demonstrate the potential application of the highly stable silver nano‐network from large diameter nanowires, organic solar cells fabricated on the nano‐network electrode incorporated with silicon dioxide nanoparticles achieve comparable performance to the ITO control device. Consequently, strategy demonstrated in this work can contribute to low‐cost and highly stable transparent electrodes in emerging flexible optoelectronics.  相似文献   

13.
One‐dimensional nanomaterials and their assemblies attract considerable scientific interest in the physical, chemical, and biological fields because of their potential applications in electronic and optical devices. The interface‐assembly method has become an important route for the self‐assembly of nanoparticles, nanosheets, nanotubes, and nanorods, but the self‐assembly of ultralong nanowires has only been successful using the Langmuir–Blodgett approach. A novel approach for the spontaneous formation of highly aligned, ultralong Ag nanowire films at the oil–water–air interface is described. In this approach, the three‐phase interface directs the movement and self‐assembly process of the ultralong Ag nanowires without the effect of an external force or complex apparatus. The ordered films exhibit intrinsic large electromagnetic fields that are localized in the interstitials between adjacent nanowires. This new three‐phase‐interface approach is proven to be a general route that can be extended to self‐assemble other ultralong nanowires and produce ordered films.  相似文献   

14.
Artificial transmembrane channel (ATC) analogs are developed for overcoming biological membrane barriers and realizing transmembrane drug delivery, which are mostly studied within artificial lipid bilayers and thus lacked enough stability in practical applications on living cells. Here, natural endocytosis of silica‐based 1D nanomaterials (nanowires) with an ultrahigh aspect ratio is investigated. Enlightened by partially endocytosed ultralong silica nanowires, ATC that can penetrate living cell membranes for transmembrane transportation of small drug molecules is creatively constructed, resulting in enhanced drug delivery efficacy and decreased the half maximal inhibitory concentration. For the first time, an in‐depth study of the cellular uptake of 1D nanomaterials with ultrahigh aspect ratios (from 10 to 120) into living cells is carried out. Through confocal laser scanning microscopy observation, the endocytosis process of ultralong nanowires, including full uptake of short nanowires and partial uptake of longer nanowires, is clarified. Theoretical simulation is performed to give a fundamental understanding on the endocytosis mechanism of ultralong 1D silica nanowires. The simulation results demonstrate the time‐dependent internalization dynamics of the nanowires, which agrees well with our experimental results. This work not only clarifies the cellular interaction between 1D nanomaterials and living cells, but also pioneers the use of natural endocytosis of 1D nanomaterials for constructing ATC.  相似文献   

15.
《Organic Electronics》2007,8(6):759-766
A series of tetraphenyl nickel dithiolene complexes, 1, are prepared, and the air stability of the n-channel organic field-effect transistors (OFET) is investigated. The fluoro and trifluoromethyl derivatives with reduction potentials higher than 0 V afford reasonably air-stable n-channel OFET. Metallic organic charge-transfer complex (TTF)(TCNQ) (TTF: tetrathiafulvalene and TCNQ: tetracyanoquinodimethane) is used as source and drain electrodes, and realizes n-channel transistor properties even when Al electrodes do not work.  相似文献   

16.
Developing electrical organic conductors is challenging because of the difficulties involved in generating free charge carriers through chemical doping. To devise a novel doping platform, the doping capabilities of four designed conjugated polymers (CPs) are quantitatively characterized using an AC Hall‐effect device. The resulting carrier density is related to the degree of electronic coupling between the CP repeating unit and 2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane (F4‐TCNQ), and doped PIDF‐BT provides an outstanding electrical conductivity, exceeding 210 S cm?1, mainly due to the doping‐assisted facile carrier generation and relatively fast carrier mobility. In addition, it is noted that a slight increment in the electron‐withdrawing ability of the repeating unit in each CP diminishes electronic coupling with F4‐TCNQ, and severely deteriorates the doping efficiency including the alteration of operating doping mechanism for the CPs. Furthermore, when PIDF‐BT with high doping capability is applied to the hole transporting layer, with F4‐TCNQ as the interfacial doping layer at the interface with perovskite, the power conversion efficiency of the perovskite solar cell improves significantly, from 17.4% to over 20%, owing to the ameliorated charge‐collection efficiency. X‐ray photoelectron spectroscopy and Kelvin probe analyses verify that the improved solar cell performance originates from the increase in the built‐in potential because of the generation of electric dipole layer.  相似文献   

17.
A robust method for epitaxial deposition of Au onto the surface of Ag nanostructures is demonstrated, which allows effective conversion of Ag nano­structures of various morphologies into Ag@Au counterparts, with the anisotropic ones showing excellent plasmonic properties comparable to the original Ag nanostructures while significantly enhanced stability. Sulfite plays a determining role in the success of this epitaxial deposition as it strongly complexes with gold cations to completely prevent galvanic replacement while it also remains benign to the Ag surface to avoid any ligand‐assisted oxidative etching. By using Ag nanoplates as an example, it is shown that the corresponding Ag@Au nanoplates possess remarkable plasmonic properties that are virtually Ag‐like, in clear contrast to Ag@Au nanospheres that exhibit much lower plasmonic activities than their Ag counterparts. As a result, they display high durability and activities in surface‐enhanced Raman scattering applications. This strategy may represent a general platform for depositing a noble metal on less stable metal nanostructures, thus opening up new opportunities in rational design of functional metal nanomaterials for a broad range of applications.  相似文献   

18.
Preparation of size‐tunable ultrathin W18O49 nanowires by an alcohol‐assisted solvothermal decomposition of tungstic acid is reported. The synthesis of ultrathin W18O49 nanowires can be achieved at large scale and low cost, while changing the molecular size of the used alcohols can control the nanowire morphology. With increasing the molecular size of the alcohol, the synthesized W18O49 nanowires have smaller diameters and longer lengths. The as‐prepared blue W18O49 nanomaterials show a very strong visible light absorption caused by oxygen defects and an aspect ratio‐dependent photocatalytic activity on the degradation of pollutant rhodamine B (RhB) under simulated solar light irradiation. It is found that the W18O49 nanowires with highest aspect ratio show the highest activity in the photodegradation of RhB, which could be related to their higher density of oxygen surface defects in combination with a higher adsorption capability of RhB. This new synthetic route of size tunable ultrathin W18O49 nanomaterials will enlarge their potential applications and can be possibly used in the pyrolyzing synthesis of other metal oxide nanomaterials.  相似文献   

19.
Metal‐infiltrated protein crystals form a novel class of bio‐nanomaterials of great interest for applications in biomedicine, chemistry, and optoelectronics. As yet, very little is known about the internal structure of these materials and the interconnectivity of the metallic network. Here, the optical response of individual Au‐ and Ag‐infiltrated cross‐linked lysozyme crystals is investigated using angle‐ and polarization‐dependent spectroscopy. The measurements unequivocally show that metallic inclusions formed inside the nanoporous solvent channels do not connect into continuous nanowires, but rather consist of ensembles of isolated spheroidal nanoclusters with aspect ratios as high as a value of four, and which exhibit a pronounced plasmonic response that is isotropic on a macroscopic length scale. Fluorescence measurement in the visible range show a strong contribution from the protein host, which is quenched by the Au inclusions, and a weaker contribution attributed to the molecule‐like emission from small Au‐clusters.  相似文献   

20.
To fabricate flexible electrodes, conventional silver (Ag) nanomaterials have been deposited onto flexible substrates, but the formed electrodes display limited electrical conductivity due to residual bulky organic ligands, and thus postsintering processes are required to improve the electrical conductivity. Herein, an entirely different approach is introduced to produce highly flexible electrodes with bulk metal–like electrical conductivity: the room‐temperature metallic fusion of multilayered silver nanoparticles (NPs). Synthesized tetraoctylammonium thiosulfate (TOAS)‐stabilized Ag NPs are deposited onto flexible substrates by layer‐by‐layer assembly involving a perfect ligand‐exchange reaction between bulky TOAS ligands and small tris(2‐aminoethyl)amine linkers. The introduced small linkers substantially reduce the separation distance between neighboring Ag NPs. This shortened interparticle distance, combined with the low cohesive energy of Ag NPs, strongly induces metallic fusion between the close‐packed Ag NPs at room temperature without additional treatments, resulting in a high electrical conductivity of ≈1.60 × 105 S cm?1 (bulk Ag: ≈6.30 × 105 S cm?1). Furthermore, depositing the TOAS–Ag NPs onto cellulose papers through this approach can convert the insulating substrates into highly flexible and conductive papers that can be used as 3D current collectors for energy‐storage devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号