首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using non‐chlorinated solvents for polymer device fabrication is highly desirable to avoid the negative environmental and health effects of chlorinated solvents. Here, a non‐chlorinated mixed solvent system, composed by a mixture of tetrahydronaphthalene and p­‐xylene, is described for processing a high mobility donor‐acceptor fused thiophene‐diketopyrrolopyrrole copolymer (PTDPPTFT4) in thin film transistors. The effects of the use of a mixed solvent system on the device performance, e.g., charge transport, morphology, and molecular packing, are investigated. p‐Xylene is chosen to promote polymer aggregation in solution, while a higher boiling point solvent, tetrahydronaphthalene, is used to allow a longer evaporation time and better solubility, which further facilitates morphological tuning. By optimizing the ratio of the two solvents, the charge transport characteristics of the polymer semiconductor device are observed to significantly improve for polymer devices deposited by spin coating and solution shearing. Average charge carrier mobilities of 3.13 cm2 V?1 s?1 and a maximum value as high as 3.94 cm2 V?1 s?1 are obtained by solution shearing. The combination of non‐chlorinated mixed solvents and the solution shearing film deposition provide a practical and environmentally‐friendly approach to achieve high performance polymer transistor devices.  相似文献   

2.
The influence of polymer entanglement on the self‐assembly, molecular packing structure, and microstructure of low‐Mw (lightly entangled) and high‐Mw (highly entangled) poly (3‐hexylthiophene) (P3HT), and the carrier transport in thin‐film transistors, are investigated. The polymer chains are gradually disentangled in a marginal solvent via ultrasonication of the polymer solution, and demonstrate improved diffusivity of precursor species (coils, aggregates, and microcrystallites), enhanced nucleation and crystallization of P3HT in solution, and self‐assembly of well‐ordered and highly textured fibrils at the solid–liquid interface. In low‐Mw P3HT, reducing chain entanglement enhances interchain and intrachain ordering, but reduces the interconnectivity of ordered domains (tie molecules) due to the presence of short chains, thus deteriorating carrier transport even in the face of improving crystallinity. Reducing chain entanglement in high‐Mw P3HT solutions increases carrier mobility up to ≈20‐fold, by enhancing interchain and intrachain ordering while maintaining a sufficiently large number of tie molecules between ordered domains. These results indicate that charge carrier mobility is strongly governed by the balancing of intrachain and interchain ordering, on the one hand, and interconnectivity of ordered domains, on the other hand. In high‐Mw P3HT, intrachain and interchain ordering appear to be the key bottlenecks to charge transport, whereas in low‐Mw P3HT, the limited interconnectivity of the ordered domains acts as the primary bottleneck to charge transport.  相似文献   

3.
A general method is proposed to produce oriented and highly crystalline conducting polymer layers. It combines the controlled orientation/crystallization of polymer films by high‐temperature rubbing with a soft‐doping method based on spin‐coating a solution of dopants in an orthogonal solvent. Doping rubbed films of regioregular poly(3‐alkylthiophene)s and poly(2,5‐bis(3‐dodecylthiophen‐2‐yl)thieno[3,2‐b ]thiophene) with 2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane (F4TCNQ) yields highly oriented conducting polymer films that display polarized UV–visible–near‐infrared (NIR) absorption, anisotropy in charge transport, and thermoelectric properties. Transmission electron microscopy and polarized UV–vis–NIR spectroscopy help understand and clarify the structure of the films and the doping mechanism. F4TCNQ? anions are incorporated into the layers of side chains and orient with their long molecular axis perpendicular to the polymer chains. The ordering of dopant molecules depends closely on the length and packing of the alkyl side chains. Increasing the dopant concentration results in a continuous variation of unit cell parameters of the doped phase. The high orientation results in anisotropic charge conductivity (σ) and thermoelectric properties that are both enhanced in the direction of the polymer chains (σ = 22 ± 5 S cm?1 and S = 60 ± 2 µV K?1). The method of fabrication of such highly oriented conducting polymer films is versatile and is applicable to a large palette of semiconducting polymers.  相似文献   

4.
The active part of present polymer light‐emitting diodes (PLEDs) consists of only a single layer. Multilayer devices have the advantage that the electron and hole transport can be balanced and that the recombination can be removed from the metallic cathode, leading to higher efficiencies. A major problem for polymer‐based multilayer devices is the solubility of the materials used; a multilayer can not be fabricated when a spin‐cast layer dissolves in the solvent of the subsequent layer. We demonstrate the development of high‐mobility poly(p‐phenylenevinylene) (PPV)‐based hole‐transport layers with tunable solubility by chemical modification. Enhanced charge‐transport properties are achieved by using symmetrically substituted PPVs; copolymers of long and short side chains enable us to tune the solubility without loss of the enhanced charge transport. Dual‐layer PLEDs, in which the holes are efficiently transported via this copolymer towards the luminescent layer, exhibit an enhanced efficiency at high voltages (> 10 V) and a strongly improved robustness against electrical breakdown.  相似文献   

5.
While molecular ordering via crystallization is responsible for many of the impressive optoelectronic properties of thin‐film semiconducting polymer devices, crystalline morphology and its crucial influence on performance remains poorly controlled and is usually studied as a passive result of the conditions imposed by film deposition parameters. A method for systematic control over crystalline morphology in conjugated polymer thin films by very precise control of nucleation density and crystal growth conditions is presented. A precast poly(3‐hexylthiophene) film is first swollen into a solution‐like state in well‐defined vapor pressures of a good solvent, while the physical state of the polymer chains is monitored using in situ UV–vis spectroscopy and ellipsometry. Nucleation density is selected by a controlled deswelling of the film or by a self‐seeding approach using undissolved crystalline aggregates that remain in the swollen film. Nucleation densities ranging successively over many orders of magnitude are achieved, extending into the regime of spherulitic domains 10 to 100 μm in diameter, a length scale highly relevant for typical probes of macroscopic charge transport such as field‐effect transistors. This method is presented as a tool for future systematic study of the structure‐function relation in semicrystalline semiconducting polymers in a broad range of applications.  相似文献   

6.
Recent achievements in our laboratory toward the “bottom‐up” fabrication of addressable multicomponent molecular entities obtained by self‐assembly of C60 and porphyrins on Ag(100) and Ag(111) surfaces are described. Scanning tunneling microscopy (STM) studies on ad‐layers constituting monomeric and triply linked porphyrin modules showed that the molecules self‐organize into ordered supramolecular assemblies, the ordering of which is controlled by the porphyrin chemical structure, the metal substrate, and the surface coverage. Specifically, the successful preparation of unprecedented two‐dimensional porphyrin‐based assemblies featuring regular pores on Ag(111) surfaces has been achieved. Subsequent co‐deposition of C60 molecules on top of the porphyrin monolayers results in selective self‐organization into ordered molecular hybrid bilayers, the organization of which is driven by both fullerene coverage and porphyrin structure. In all‐ordered fullerene–porphyrin assemblies, the C60 guests organize, unusually, into long chains and/or two‐dimensional arrays. Furthermore, sublimation of C60 on top of the porous porphyrin network reveals the selective long‐range inclusion of the fullerene guests within the hosting cavities. The observed mode of the C60 self‐assembly originates from a delicate equilibrium between substrate–molecule and molecule–molecule interactions involving charge‐transfer processes and conformational reorganizations as a consequence of the structural adaptation of the fullerene–porphyrin bilayer.  相似文献   

7.
Block co‐polymer patterns are attractive candidates for nanoparticle assemblies. Directed self‐assembly of block co‐polymers in particular allows for long range ordering of the patterns, making them interesting scaffolds for the organization of magnetic particles. Here, a method to tune the channel width of polymer‐derived trenches via atomic layer deposition (ALD) of alumina is reported. The alumnia coating provides a much more thermally robust pattern that is stable up to 250 °C. Using these patterns, magnetic coupling in both ferromagnetic and superparamagnetic nanocrystal chains is achieved.  相似文献   

8.
Low bandgap polymer (LBG):fullerene mixtures are some of the most promising organic photovoltaic active layers. Unfortunately, there are no post‐deposition treatments available to rationally improve the morphology and performance of as‐cast LBG:fullerene OPV active layers, where thermal annealing usually fails. Therefore, there is a glaring need to develop post‐deposition methods to guide the morphology of LBG:fullerene bulk heterojunctions towards targeted structures and performance. In this paper, the structural evolution of PCPDTBT:PCBM mixtures with solvent annealing (SA) is examined, focusing on the effect of solvent quality of the fullerene and polymer in the annealing vapor on morphological evolution and device performance. The results indicate that exposure of this active layer to the solvent vapor controls the ordering of PCPDTBT and PCBM phase separation very effectively, presumably by inducing component mobility as the solvent plasticizes the mixture. These results also unexpectedly indicate that solvent annealing in a selective solvent provides a method to invert the morphology of the LBG:fullerene mixture from a polymer aggregate dispersed in a polymer:fullerene matrix to fullerene aggregates dispersed in a polymer:fullerene matrix. The judicious choice of solvent vapor, therefore, provides a unique method to exquisitely control and optimize the morphology of LBG conjugated polymer/fullerene mixtures.  相似文献   

9.
Temperature‐dependent (80–350 K) charge transport in polymer semiconductor thin films is studied in parallel with in situ X‐ray structural characterization at equivalent temperatures. The study is conducted on a pair of isoindigo‐based polymers containing the same π‐conjugated backbone with different side chains: one with siloxane‐terminated side chains (PII2T‐Si) and the other with branched alkyl‐terminated side chains (PII2T‐Ref). The different chemical moiety in the side chain results in a completely different film morphology. PII2T‐Si films show domains of both edge‐on and face‐on orientations (bimodal orientation) while PII2T‐Ref films show domains of edge‐on orientation (unimodal orientation). Electrical transport properties of this pair of polymers are also distinctive, especially at high temperatures (>230 K). Smaller activation energy (E A) and larger pre‐exponential factor (μ 0) in the mobility‐temperature Arrhenius relation are obtained for PII2T‐Si films when compared to those for PII2T‐Ref films. The results indicate that the more effective transport pathway is formed for PII2T‐Si films than for the other, despite the bimodally oriented film structure. The closer π–π packing distance, the longer coherence length of the molecular ordering, and the smaller disorder of the transport energy states for PII2T‐Si films altogether support the conduction to occur more effectively through a system with both edge‐on and face on orientations of the conjugated molecules. Reminding the 3D nature of conduction in polymer semiconductor, our results suggest that the engineering rules for advanced polymer semiconductors should not simply focus on obtaining films with conjugated backbone in edge‐on orientation only. Instead, the engineering should also encounter the contribution of the inevitable off‐directional transport process to attain effective transport from polymer thin films.  相似文献   

10.
Solution‐processable functionalized acenes have received special attention as promising organic semiconductors in recent years because of their superior intermolecular interactions and solution‐processability, and provide useful benchmarks for organic field‐effect transistors (OFETs). Charge‐carrier transport in organic semiconductor thin films is governed by their morphologies and molecular orientation, so self‐assembly of these functionalized acenes during solution processing is an important challenge. This article discusses the charge‐carrier transport characteristics of solution‐processed functionalized acene transistors and, in particular, focuses on the fine control of the films' morphologies and structural evolution during film‐deposition processes such as inkjet printing and post‐deposition annealing. We discuss strategies for controlling morphologies and crystalline microstructure of soluble acenes with a view to fabricating high‐performance OFETs.  相似文献   

11.
A platform is described for the first time for the facile synthesis of oligo‐ and polythiophene‐S‐oxides and the corresponding ‐S,S‐dioxides in short times, mild conditions, high yields. Employing ultrasound assistance, brominated thiophenes are selectively mono‐ or dioxygenated at room temperature. These building blocks are then combined with metalated thiophenes via microwave‐assisted cross‐coupling reactions through a “Lego‐like” strategy to afford unprecedented oligo/polythiophene‐S‐oxides and mixed ‐S‐oxides/‐S,S‐dioxides. It is demonstrated that depending on the number, type, and sequence alternation of nonoxygenated, monooxygenated, and dioxygenated thiophene units a very wide property–function tuning can be achieved spanning from frontier orbital energies and energy gaps, to charge transport characteristics and supramolecular H‐bonding interactions with specific proteins inside live cells.  相似文献   

12.
A series of oligo(fluorene‐co‐bithiophene)s, OF2Ts , have been synthesized and characterized to investigate the effects of oligomer length and pendant aliphatic structure on glassy‐nematic mesomorphism. The OF2Ts comprising more than one repeat unit and their polymer analogue, PF2T , carrying 52 number‐average repeat units, possess the highest occupied molecular orbital energy level at ?5.3 ± 0.2 eV, but the anisotropic field‐effect mobilities increase with the oligomer length. Spin coating from high‐boiling chlorobenzene with and without subsequent exposure to saturated chlorobenzene vapor constitute solvent‐vapor annealing and quasi‐solvent annealing, respectively. Solvent‐vapor annealing yields monodomain glassy‐nematic films in which OF2Ts are aligned as well as with thermal annealing across a 2 cm diameter. Quasi‐solvent annealing, however, amounts to kinetically trapping a lower orientational order than solvent‐vapor or thermal annealing. While amenable to thermal annealing at elevated temperatures, PF2T shows no alignment at all following either strategy of solvent annealing.  相似文献   

13.
The morphology with the interpenetrating network and optimized vertical phase separation plays a key role in determining the charge transport and collection in polymer:nonfullerene small molecular acceptors (SMAs) solar cells. However, the crystallization of polymer and SMAs usually occurs simultaneously during film‐forming, thus interfering with the crystallization process of each other, leading to amorphous film with undesirable lateral and vertical phase separation. The poly(3‐hexylthiophene) (P3HT):O‐IDTBR blend is selected as a model system, and controlling film‐forming kinetics to solve these problems is proposed. Herein, a cosolvent 1,2,4‐triclorobenzene (TCB) with selective solubility and a high boiling point is added to the solution, leading to prior crystallization of P3HT and extended film‐forming duration. As a result, the crystallinity of both components is enhanced significantly. Meanwhile, the prior crystallization of P3HT induces solid–liquid phase separation, hence rationalizing the formation of the nano‐interpenetrating network. Moreover, the surface energy drives O‐IDTBR to enrich near the cathode and P3HT to migrate to the anode. Consequently, a highly crystalline nano‐interpenetrating network with proper vertical phase separation is obtained. The optimal morphology improves charge transport and suppresses bimolecular recombination, boosting the power conversion efficiency from 4.45% to 7.18%, which is the highest performance in P3HT‐based binary nonfullerene solar cells.  相似文献   

14.
Alkyl chains are basic units in the design of organic semiconductors for purposes of enhancing solubility, tuning electronic energy levels, and tailoring molecular packing. This work demonstrates that the carrier mobilities of indeno[1,2‐b ]fluorene‐6,12‐dione ( IFD )‐based semiconductors can be dramatically enhanced by the incorporation of sulfur‐ or nitrogen‐linked side chains. Three IFD derivatives possessing butyl, butylthio, and dibutylamino substituents are synthesized, and their organic field‐effect transistors (OFET) are fabricated and characterized. The IFD possessing butyl substituents exhibits a very poor charge transport property with mobility lower than 10?7 cm2 V?1 s?1. In contrast, the hole mobility is dramatically increased to 1.03 cm2 V?1 s?1 by replacing the butyl units with dibutylamino groups ( DBA‐IFD ), while the butylthio‐modified IFD ( BT‐IFD ) derivative exhibits a high and balanced ambipolar charge transport property with the maximum hole and electron mobilities up to 0.71 and 0.65 cm2 V?1 s?1, respectively. Moreover, the complementary metal–oxide–semiconductor‐like inverters incorporated with the ambipolar OFETs shows sharp inversions with a maximum gain value up to 173. This work reveals that modification of the aromatic core with heteroatom‐linked side chains, such as alkylthio or dialkylamino, can be an efficient strategy for the design of high‐performance organic semiconductors.  相似文献   

15.
Thermoelectric generators pose a promising approach in renewable energies as they can convert waste heat into electricity. In order to build high efficiency devices, suitable thermoelectric materials, both n‐ and p‐type, are needed. Here, the n‐type high‐mobility polymer poly[N,N′‐bis(2‐octyldodecyl)naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene) (P(NDI2OD‐T2)) is focused upon. Via solution doping with 4‐(1,3‐dimethyl‐2,3‐dihydro‐1H‐benzoimidazol‐2‐yl)‐N,N‐diphenylaniline (N‐DPBI), a maximum power factor of (1.84 ± 0.13) µW K?2 m?1 is achieved in an in‐plane geometry for 5 wt% dopant concentration. Additionally, UV–vis spectroscopy and grazing‐incidence wide‐angle X‐ray scattering are applied to elucidate the mechanisms of the doping process and to explain the discrepancy in thermoelectric performance depending on the charge carriers being either transported in‐plane or cross‐plane. Morphological changes are found such that the crystallites, built‐up by extended polymer chains interacting via lamellar and π–π stacking, re‐arrange from face‐ to edge‐on orientation upon doping. At high doping concentrations, dopant molecules disturb the crystallinity of the polymer, hindering charge transport and leading to a decreased power factor at high dopant concentrations. These observations explain why an intermediate doping concentration of N‐DPBI leads to an optimized thermoelectric performance of P(NDI2OD‐T2) in an in‐plane geometry as compared to the cross‐plane case.  相似文献   

16.
Here a method is presented for the temperature‐switchable assembly of viral particles into large hierarchical complexes. Dual‐functional diblock copolymers consisting of poly(diethyleneglycol methyl ether methacry­late) (poly(DEGMA)) and poly((2‐dimethylamino)ethyl methacrylate) (poly(DMAEMA)) blocks self‐assemble electrostatically with cowpea chlorotic mottle virus (CCMV) particles into micrometer‐sized objects as a function of temperature. The poly(DMAEMA) block carries a positive charge, which can interact electrostatically with the negatively charged outer surface of the CCMV capsid. When the solution temperature is increased above 40 °C, to cross the cloud point temperature (Tcp) of the DEGMA block, the polymer chains collapse on the surface of the virus particle, which makes them partially hydrophobic, and consequently causes the formation of large hierarchical assemblies. Disassembly of the virus–polymer complexes can be induced by reducing the solution temperature below the Tcp, which allows the poly(DEGMA) blocks to rehydrate and free virus particles to be released. The assembly process is fully reversible and can sustain several heating–cooling cycles. Importantly, this method relies on reversible supramolecular interactions and therefore avoids the irreversible covalent modification of the particle surface. This study illustrates the potential of temperature‐responsive polymers for controlled binding and releasing of virus particles.  相似文献   

17.
The introduction of side chains in π‐conjugated molecules is a design strategy widely exploited to increase molecular solubility thus improving the processability, while directly influencing the self‐assembly and consequently the electrical properties of thin films. Here, a multiscale structural analysis performed by X‐ray diffraction, X‐ray reflectivity, and atomic force microscopy on thin films of dicyanoperylene molecules decorated with either linear or branched side chains is reported. The substitution with asymmetric branched alkyl chains allows obtaining, upon thermal annealing, field‐effect transistors with enhanced transport properties with respect to linear alkyl chains. Branched chains induce molecular disorder during the film growth from solution, effectively favouring 2D morphology. Post‐deposition thermal annealing leads to a structural transition towards the bulk‐phase for molecules with branched chains, still preserving the 2D morphology and allowing efficient charge transport between crystalline domains. Conversely, molecules with linear chains self‐assemble into 3D islands exhibiting the bulk‐phase structure. Upon thermal annealing, these 3D islands keep their size constant and no major changes are observed in the organic field effect transistor characteristics. These findings demonstrate that the disorder generated by the asymmetric branched chains when the molecule is physisorbed in thin film can be instrumental for enhancing charge transport via thermal annealing.  相似文献   

18.
This paper compares the optical, electronic, physical and chemical properties of dielectric thin films that are commonly used to enhance the performance of bulk silicon photovoltaic devices. The standard buried‐contact (BC) solar cell presents a particularly challenging set of criteria, requiring the dielectric film to act as: (i) an anti‐reflection (AR) coating; (ii) a film compatible with surface passivation; (iii) a mask for an electroless metal plating step; (iv) a diffusion barrier for achieving a selective emitter; (v) a film with excellent chemical resistance; (vi) a stable layer during high‐temperature processing. The dielectric coatings reviewed here include thermally grown silicon dioxide (SiO2), silicon nitride deposited by plasma‐enhanced chemical vapour deposition (a‐ SiNx :H) and low‐pressure chemical vapour deposition (Si3N4), silicon oxynitride (SiON), cerium dioxide (CeO2), zinc sulphide (ZnS), and titanium dioxide (TiO2). While TiO2 dielectric coatings exhibit the best optical performance and a simple post‐deposition surface passivation sequence has been developed, they require an additional sacrificial diffusion barrier to survive the heavy groove diffusion step. A‐ SiNx :H affords passivation through its high fixed positive charge density and large hydrogen concentration; however, it is difficult to retain these electronic benefits during lengthy high‐temperature processing. Therefore, for the BC solar cell, Si3N4 films would appear to be the best choice of dielectric films common in industrial use. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
Herein, this study investigates the impact of branching‐point‐extended alkyl chains on the charge transport properties of three ultrahigh n‐type mobility conjugated polymers. Using grazing incidence wide‐angle X‐ray scattering, analysis of the crystallinity of the series shows that while π–π interactions are increased for all three polymers as expected, the impact of the side‐chain engineering on polymer backbone crystallinity is unique to each polymer and correlates to the observed changes in charge transport. With the three polymers exhibiting n‐type mobilities between 0.63 and 1.04 cm2 V?1 s?1, these results ratify that the indolonaphthyridine building block has an unprecedented intrinsic ability to furnish high‐performance n‐type organic semiconductors.  相似文献   

20.
A combination of patterning and film alignment techniques helps to build multi‐order polymer architecture for application in flexible electronics. A direct‐writing method is employed using microcapillary arrays to prepare semiconducting polymer films with both optical and electrical anisotropy. Not only aligned poly(3‐butylthiophene) (P3BT) nanowires in neat P3BT films, but also aligned P3BT nanowires within a polystyrene (PS) matrix are obtained, which yields an aligned semiconductor/insulator polymer blend with anisotropic charge transport. The field‐effect transistor (FET) mobilities/threshold voltages from both vertical and parallel to alignment directions as well as their dependence on blending ratio are studied. The increased mobility of P3BT/PS blends, as compared with neat P3BT, is observed in both vertical and parallel directions. Using this alignment method, FET mobility and threshold voltage of the semiconductor/insulator polymer blends are comprehensively tuned, from which a digital inverter with gain up to 80 is realized. Therefore, this work not only helps understanding the charge transport mechanism in semiconducting/insulating polymer blends, but also provides an effective approach towards high‐performance field‐effect transistors with tunable mobility and threshold voltage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号