首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organometal halide perovskites quantum dots (OHP‐QDs) with bright, color‐tunable, and narrow‐band photoluminescence have significant advantages in display, lighting, and laser applications. Due to sparse concentrations and difficulties in the enrichment of OHP‐QDs, production of large‐area uniform films of OHP‐QDs is a challenging task, which largely impedes their use in electroluminescence devices. Here, a simple dip‐coating method has been reported to effectively fabricate large‐area uniform films of OHP‐QDs. Using this technique, multicolor OHP‐QDs light‐emitting diodes (OQ‐LEDs) emitting in blue, blue‐green, green, orange, and red color have been successfully produced by simply tuning the halide composition or size of QDs. The blue, green, and red OQ‐LEDs exhibited, respectively, a maximum luminance of 2673, 2398, and 986 cd m?2 at a current efficiency of 4.01, 3.72, and 1.52 cd A?1, and an external quantum efficiency of 1.38%, 1.06%, and 0.53%, which are much better than most LEDs based on OHP films. The packaged OQ‐LEDs show long‐term stability in air (humidity ≈50%) for at least 7 d. The results demonstrate the great potential of the dip‐coating method to fabricate large‐area uniform films for various QDs. The high‐efficiency OQ‐LEDs also demonstrate the promising potential of OHP‐QDs for low‐cost display, lighting, and optical communication applications.  相似文献   

2.
Unbalanced charge injection is deleterious for the performance of colloidal quantum dot (CQD) light‐emitting diodes (LEDs) as it deteriorates the quantum efficiency, brightness, and operational lifetime. CQD LEDs emitting in the infrared have previously achieved high quantum efficiencies but only when driven to emit in the low‐radiance regime. At higher radiance levels, required for practical applications, the efficiency decreased dramatically in view of the notorious efficiency droop. Here, a novel methodology is reported to regulate charge supply in multinary bandgap CQD composites that facilitates improved charge balance. The current approach is based on engineering the energetic potential landscape at the supra‐nanocrystalline level that has allowed to report short‐wave infrared PbS CQD LEDs with record‐high external quantum efficiency in excess of 8%, most importantly, at a radiance level of ≈5 W sr?1 m2, an order of magnitude higher than prior reports. Furthermore, the balanced charge injection and Auger recombination reduction has led to unprecedentedly high operational stability with radiance half‐life of 26 068 h at a radiance of 1 W sr?1 m?2.  相似文献   

3.
The external quantum efficiencies (EQEs) of perovskite quantum dot light‐emitting diodes (QD‐LEDs) are close to the out‐coupling efficiency limitation. However, these high‐performance QD‐LEDs still suffer from a serious issue of efficiency roll‐off at high current density. More injected carriers produce photons less efficiently, strongly suggesting the variation of ratio between radiative and non‐radiative recombination. An approach is proposed to balance the carrier distribution and achieve high EQE at high current density. The average interdot distance between QDs is reduced and this facilitates carrier transport in QD films and thus electrons and holes have a balanced distribution in QD layers. Such encouraging results augment the proportion of radiative recombination, make devices with peak EQE of 12.7%, and present a great device performance at high current density with an EQE roll‐off of 11% at 500 mA cm?2 (the lowest roll‐off known so far) where the EQE is still over 11%.  相似文献   

4.
冯异 《光机电信息》2010,27(1):23-28
近年来,GaN基发光二极管发展迅猛,但其发光效率一直是制约LED在照明领域广泛应用的主要瓶颈。本文简要介绍了提高发光二极管外量子效率的几种途径:生长分布布喇格反射层(DBR)结构,表面粗化技术,异性芯片技术,采用光子晶体结构,倒装芯片技术,激光剥离技术,透明衬底技术等。  相似文献   

5.
In the study of hybrid quantum dot light‐emitting diodes (QLEDs), even for state‐of‐the‐art achievement, there still exists a long‐standing charge balance problem, i.e., sufficient electron injection versus inefficient hole injection due to the large valence band offset of quantum dots (QDs) with respect to the adjacent carrier transport layer. Here the dedicated design and synthesis of high luminescence Zn1?x CdxSe/ZnSe/ZnS QDs is reported by precisely controlled shell growth, which have matched energy level with the adjacent hole transport layer in QLEDs. As emitters, such Zn1?xCdxSe‐ based QLEDs exhibit peak external quantum efficiencies (EQE) of up to 30.9%, maximum brightness of over 334 000 cd m?2, very low efficiency roll‐off at high current density (EQE ≈25% @ current density of 150 mA cm?2), and operational lifetime extended to ≈1 800 000 h at 100 cd m?2. These extraordinary performances make this work the best among all solution‐processed QLEDs reported in literature so far by achieving simultaneously high luminescence and balanced charge injection. These major advances are attributed to the combination of an intermediate ZnSe layer with an ultrathin ZnS outer layer as the shell materials and surface modification with 2‐ethylhexane‐1‐thiol, which can dramatically improve hole injection efficiency and thus lead to more balanced charge injection.  相似文献   

6.
7.
Solution‐processed oxide thin films are actively pursued as hole‐injection layers (HILs) in quantum‐dot light‐emitting diodes (QLEDs), aiming to improve operational stability. However, device performance is largely limited by inefficient hole injection at the interfaces of the oxide HILs and high‐ionization‐potential organic hole‐transporting layers. Solution‐processed NiOx films with a high and stable work function of ≈5.7 eV achieved by a simple and facile surface‐modification strategy are presented. QLEDs based on the surface‐modified NiOx HILs show driving voltages of 2.1 and 3.3 V to reach 1000 and 10 000 cd m?2, respectively, both of which are the lowest among all solution‐processed LEDs and vacuum‐deposited OLEDs. The device exhibits a T95 operational lifetime of ≈2500 h at an initial brightness of 1000 cd m?2, meeting the commercialization requirements for display applications. The results highlight the potential of solution‐processed oxide HILs for achieving efficient‐driven and long‐lifetime QLEDs.  相似文献   

8.
Organic light‐emitting diodes (OLEDs) are widely used in research and are established in the industry. The building block nature of organic compounds enables a vast variety of materials. On top of that, there exist many strategies to improve the light outcoupling of OLEDs making a direct comparison of outcoupling technologies difficult. Here, a novel approach is introduced for the evaluation of light outcoupling structures. The new defined “efficiency of light outcoupling structures” (ELOS) clearly determines the effectiveness of the light outcoupling structure by weighting the experimental efficiency enhancement over the theoretical outcoupling gain. It neither depends on cavity design nor on the chosen organic material. The methodology is illustrated for red phosphorescent OLEDs comprising internal and external light outcoupling structures. Assumptions and further uses are discussed with respect to experimental and theoretical handling. In addition, the ELOS is calculated for various outcoupling techniques from literature to demonstrate the universality. Finally, most suitable reference OLEDs are discussed for application of light outcoupling structures. The presented approach enables new possibilities for studying light outcoupling structures and improves their comparability in a highly material‐driven research field.  相似文献   

9.
Organic light‐emitting diodes (OLEDs) are increasingly used in displays replacing traditional flat panel displays; e.g., liquid crystal displays. Especially, the paradigm shifts in displays from rigid to flexible types accelerated the market change from liquid crystal displays to OLEDs. However, some critical issues must be resolved for expansion of OLED use, of which blue device performance is one of the most important. Therefore, recent OLED material development has focused on the design, synthesis and application of high‐efficiency and long‐life blue emitters. Well‐known blue fluorescent emitters have been modified to improve their efficiency and lifetime, and blue phosphorescent emitters are being investigated to overcome the lifetime issue. Recently, thermally activated delayed fluorescent emitters have received attention due to the potential of high‐efficiency and long‐living emitters. Therefore, it is timely to review the recent progress and future prospects of high‐efficiency blue emitters. In this feature article, we summarize recent developments in blue fluorescent, phosphorescent and thermally activated delayed fluorescent emitters, and suggest key issues for each emitter and future development strategies.  相似文献   

10.
11.
Organic‐inorganic hybrid perovskite (CH3NH3PbX3, X = Cl, Br or I) quantum dots (QDs) have shown superior optoelectronic properties and have been regarded as a most ideal material for next‐generation optoelectronic devices, particularly for QDs‐based light‐emitting diodes (QLEDs). However, there are only a few reports on CH3NH3PbX3 QLEDs and the reported performance is still very poor, primarily due to the difficulties in the fabrication of high‐quality compact QDs thin films. In this work, an electric‐field‐assisted strategy is developed for efficient fabrication of uniform CH3NH3PbBr3 QDs thin films with high photoluminescence quantum yields (PLQY, 80%–90%) from dilute CH3NH3PbBr3 QDs suspensions (≈0.1 mg mL‐1) within 5 mins. Benefited from the high‐quality CH3NH3PbBr3 QDs thin films, the corresponding QLEDs deliver a highly bright green emission with maximum luminances of 12450 cd m2. Furthermore, a current efficiency of 12.7 cd A‐1, a power efficiency of 9.7 lm W‐1, and an external quantum efficiency (EQE) of 3.2% were acheived by enhancing the hole injection. This performance represents the best results for CH3NH3PbBr3 QDs‐based QLEDs reported to date. These results indicate an important progress in the fabrication of high‐performance CH3NH3PbX3 QLEDs and demonstrate their huge potential for next‐generation displays and lighting.  相似文献   

12.
Controlling the transport and minimizing charge carrier trapping at interfaces is crucial for the performance of various optoelectronic devices. Here, how electronic properties of stable, abundant, and easy‐to‐synthesized carbon dots (CDs) are controlled via the surface chemistry through a chosen ratio of their precursors citric acid and ethylenediamine are demonstrated. This allows to adjust the work function of indium tin oxide (ITO) films over the broad range of 1.57 eV, through deposition of thin CD layers. CD modifiers with abundant amine groups reduce the ITO work function from 4.64 to 3.42 eV, while those with abundant carboxyl groups increase it to 4.99 eV. Using CDs to modify interfaces between metal oxide (SnO2 and ZnO) films and active layers of solar cells and light‐emitting diodes (LEDs) allows to significantly improve their performance. Power conversion efficiency of CH3NH3PbI3 perovskite solar cells increases from 17.3% to 19.5%; the external quantum efficiency of CsPbI3 perovskite quantum dot LEDs increases from 4.8% to 10.3%; and that of CdSe/ZnS quantum dot LEDs increases from 8.1% to 21.9%. As CD films are easily fabricated in air by solution processing, the approach paves the way to a simplified manufacturing of large‐area and low‐cost optoelectronic devices.  相似文献   

13.
Graphene quantum dots (GQDs) with white fluorescence are synthesized by a microwave‐assisted hydrothermal method using graphite as the precursor. A solution‐processed white‐light‐emitting diode (WLED) is fabricated using the as‐prepared white fluorescent GQDs (white‐light‐emitting graphene quantum dots, WGQDs) doped 4,4‐bis(carbazol‐9‐yl)biphenyl as the emissive layer. White‐light emission is obtained from the WLED with 10 wt% doping concentration of WGQDs, which shows a luminance of 200 cd m?2 at the applied voltage of 11–14 V. Importantly, an external quantum efficiency of 0.2% is achieved, which is the highest among all the reported WLED based on GQDs or carbon dots. The results demonstrate that WGQDs as a novel phosphor may open up a new avenue to develop the environmentally friendly WLEDs for practical application in solid‐state lighting.  相似文献   

14.
In response to the call for a physiologically‐friendly light at night that shows low color temperature, a candle light‐style organic light emitting diode (OLED) is developed with a color temperature as low as 1900 K, a color rendering index (CRI) as high as 93, and an efficacy at least two times that of incandescent bulbs. In addition, the device has a 80% resemblance in luminance spectrum to that of a candle. Most importantly, the sensationally warm candle light‐style emission is driven by electricity in lieu of the energy‐wasting and greenhouse gas emitting hydrocarbon‐burning candles invented 5000 years ago. This candle light‐style OLED may serve as a safe measure for illumination at night. Moreover, it has a high color rendering index with a decent efficiency.  相似文献   

15.
Quantum dot light‐emitting diodes (QLEDs) with tandem structure are promising candidates for future displays because of their advantages of pure emission color, long lifetime, high brightness, and high efficiency. To obtain efficient QLEDs, a solution‐processable interconnecting layer (ICL) based on poly(3, 4‐ethylenedioxythiophene)/polystyrene sulfonate/ZnMgO is developed. With the proposed ICL, all‐solution‐processed, inverted, tandem QLEDs are demonstrated with high current efficiency (CE) of 57.06 cd A?1 and external quantum efficiency (EQE) of 13.65%. By further optimizing the fabrication processes and using a hybrid deposition technique, the resultant tandem QLEDs exhibit a very high CE over 100 cd A?1 and an impressive EQE over 23%, which are the highest values ever reported and are comparable with those of the state‐of‐the‐art phosphorescent organic LEDs. Moreover, the efficiency roll‐off, a notorious phenomenon in phosphorescent LEDs, is significantly reduced in the developed QLEDs. For example, even at a very high brightness over 200 000 cd m?2, the tandem QLEDs can still maintain a high CE of 96.47 cd A?1 and an EQE of 22.62%. The proposed ICL and the developed fabrication methods allow for realization of very efficient tandem QLEDs for next generation display and lighting applications.  相似文献   

16.
Substrates with high transmittance and high haze are desired for increasing the light outcoupling efficiency of organic light‐emitting diodes (OLEDs). However, most of the polymer films used as substrate have high transmittance and low haze. Herein, a facile route to fabricate a built‐in haze glass‐fabric reinforced siloxane hybrid (GFRH) film having high total transmittance (≈89%) and high haze (≈89%) is reported using the scattering effect induced by refractive index contrast between the glass fabric and the siloxane hybrid (hybrimer). The hybrimer exhibiting large refractive index contrast with the glass fabric is synthesized by removing the phenyl substituents. Besides its optical properties, the hazy GFRH films exhibit smooth surface (Rsq = 0.2 nm), low thermal expansion (13 ppm °C−1), high chemical stability, and dimensional stability. Owing to the outstanding properties of the GFRH film, OLED is successfully fabricated onto the film exhibiting 74% external quantum efficiency enhancement. The hazy GFRH's unique optical properties, excellent thermal stability, outstanding dimensional stability, and the ability to perform as a transparent electrode enable them as a wide ranging substrate for the flexible optoelectronic devices.  相似文献   

17.
MXenes (Ti3C2) are 2D transition‐metal carbides and carbonitrides with high conductivity and optical transparency. However, transparent MXene electrodes suitable for polymer light‐emitting diodes (PLEDs) have rarely been demonstrated. With the discovery of the excellent electrical stability of MXene under an alternating current (AC), herein, PLEDs that employ MXene electrodes and exhibit high performance under AC operation (AC MXene PLEDs) are presented. The PLED exhibits a turn‐on voltage, current efficiency, and brightness of 2.1 V, 7 cd A?1, and 12 547 cd m?2, respectively, when operated under AC with a frequency of 1 kHz. The results indicate that the undesirable electric breakdown associated with heat arising from the poor interface of the MXene with a hole transport layer in the direct‐current mode is efficiently suppressed by the transient injection of carriers accompanied by the alternating change of the electric polarity under the AC, giving rise to reliable light emission with a high efficiency. The solution‐processable MXene electrode can be readily fabricated on a flexible polymer substrate, allowing for the development of a mechanically flexible AC MXene PLED with a higher performance than flexible PLEDs employing solution‐processed nanomaterial‐based electrodes such as carbon nanotubes, reduced graphene oxide, and Ag nanowires.  相似文献   

18.
Large‐area, ultrathin light‐emitting devices currently inspire architects and interior and automotive designers all over the world. Light‐emitting electrochemical cells (LECs) and quantum dot light‐emitting diodes (QD‐LEDs) belong to the most promising next‐generation device concepts for future flexible and large‐area lighting technologies. Both concepts incorporate solution‐based fabrication techniques, which makes them attractive for low cost applications based on, for example, roll‐to‐roll fabrication or inkjet printing. However, both concepts have unique benefits that justify their appeal. LECs comprise ionic species in the active layer, which leads to the omission of additional organic charge injection and transport layers and reactive cathode materials, thus LECs impress with their simple device architecture. QD‐LEDs impress with purity and opulence of available colors: colloidal quantum dots (QDs) are semiconducting nanocrystals that show high yield light emission, which can be easily tuned over the whole visible spectrum by material composition and size. Emerging technologies that unite the potential of both concepts (LEC and QD‐LED) are covered, either by extending a typical LEC architecture with additional QDs, or by replacing the entire organic LEC emitter with QDs or perovskite nanocrystals, still keeping the easy LEC setup featured by the incorporation of mobile ions.  相似文献   

19.
20.
Solution‐processed metal halide perovskites (MHPs) have attracted much attention for applications in light‐emitting diodes (LEDs) due to their wide color gamut, high color purity, tunable emission wavelength, balanced electron/hole transportation, etc. Although MHPs are very tolerant to defects, the defects in solution‐processed perovskite LEDs (PeLEDs) still cause severe nonradiative recombination and device instability. Here, molecular design of additives for dual passivation of both lead and halide defects in perovskites is reported. A bi‐functional additive, 4‐fluorophenylmethylammonium‐trifluoroacetate (FPMATFA), is synthesized by using a simple solution process. The TFA anions and FPMA cations can bond with undercoordinated lead and halide ions, respectively, resulting in dual passivation of both lead and halide defects. In addition, the bulky FPMA group can constrain the grain growth of 3D perovskite, enhancing electron–hole capture rates and radiative recombination rates. As a result, high‐performance PeLEDs with a peak external quantum efficiency reaching 20.9% and emission wavelength at 694 nm are achieved using formamidinium‐cesium lead iodide‐bromide (FA0.33Cs0.67Pb(I0.7Br0.3)3). Furthermore, the operational lifetime of PeLEDs is also greatly improved due to the low trap density in the perovskite film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号