首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study is on the enhancement of the efficiency of wide bandgap (FA0.8Cs0.2PbI1.8Br1.2) perovskite solar cells (PSCs) used as the top layer of the perovskite/perovskite tandem solar cell. Poly[bis(4-phenyl) (2,4,6-trimethylphenyl) amine] (PTAA) and the monomolecular layer called SAM layer are effective hole collection layers for APbI3 PSCs. However, these hole transport layers (HTL) do not give high efficiencies for the wide bandgap FA0.8Cs0.2PbI1.8Br1.2 PSCs. It is found that the surface-modified PTAA by monomolecular layer (MNL) improves the efficiency of PSCs. The improved efficiency is explained by the improved FA0.8Cs0.2PbI1.8Br1.2 film quality, decreased film distortion (low lattice disordering) and low density of the charge recombination site, and improves carrier collection by the surface modified PTAA layer. In addition, the relationship between the length of the alkyl group linking the anchor group and the carbazole group is also discussed. Finally, the wide bandgap lead PSCs (Eg = 1.77 eV) fabricated on the PTAA/monomolecular bilayer give a higher power conversion efficiency of 16.57%. Meanwhile, all-perovskite tandem solar cells with over 25% efficiency are reported by using the PTAA/monomolecular substrate.  相似文献   

2.
All-polymer solar cells (all-PSCs) possess distinguished advantages of excellent morphology stability, thermal stability, and mechanical flexibility. Tandem solar cells, by stacking two sub-cells, can absorb more photons in a wider wavelength range and can reduce thermal losses. However, limitation of polymer acceptors with suitable bandgaps hinders the development of tandem all-PSCs. Herein, highly efficient tandem all-PSCs are fabricated by employing two polymerized small molecular acceptors (PSMAs) of wide bandgap PIDT (1.66 eV) in the front cell and narrow bandgap PY-IT (1.4 eV) in the rear cell. The two sub-cells with the polymer donors of PM7 in front cell and PM6 in rear cell show high open circuit voltage (Voc) of 1.10 V for the front cell and 0.94 V for the rear cell. By rational device optimizations, the best power conversion efficiency of 17.87% is achieved for the tandem all-PSCs with high Voc of 2.00 V. 17.87% is one of the highest efficiency for the all-PSCs, and 2.00 V is one of the highest Voc for all the tandem organic solar cells. Moreover, the tandem all-PSCs show excellent thermal and light-soaking stability compared with their small-molecule counterparts. The results provide insight to the potential of bandgap tuning in PSMAs, and indicate that the tandem architecture is an effective strategy to boost performance of the all-PSCs.  相似文献   

3.
The maximum photocurrent in tandem organic solar cells (TOSCs) is often obtained by increasing the thicknesses of sub-cells, which leads to recombination enhancement of such devices and compromises their power conversion efficiency (PCE). In this work, an efficient interconnecting layer (ICL) is developed, with the structure ZnO NPs:PEI/PEI/PEDOT:PSS, which enables TOSCs with very good reproducibility. Then, it is discovered that the optimal thickness of the front sub-cell in such TOSCs can be reduced by increasing the proportion of a non-fullerene acceptor in the active layer. The non-fullerene acceptor used in this work has a much larger absorption coefficient than the donor in the front sub-cell, and the absorption reduction of donor can be well complemented by that of the acceptor when increasing the acceptor proportion, thus leading to a significant overall absorption enhancement even with a thinner film. As a result, the optimal thickness of the front sub-cell is reduced and its charge recombination is suppressed. Ultimately, the use of this ICL combined with fine-turning of the composition in the front sub-cell enables an efficient TOSC with a very high fill factor of 78% and an excellent PCE of 18.71% (certified by an accredited institute to be 18.09%) to be obtained.  相似文献   

4.
The versatility of a fluoro‐containing low band‐gap polymer, poly[2,6‐(4,4‐bis(2‐ethylhexyl)‐4H‐cyclopenta[2,1‐b;3,4‐b’]dithiophene)‐alt‐4,7‐(5‐fluoro‐2,1,3‐benzothia‐diazole)] (PCPDTFBT) in organic photovoltaics (OPVs) applications is demonstrated. High boiling point 1,3,5‐trichlorobenzene (TCB) is used as a solvent to manipulate PCPDTFBT:[6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) active layer morphology to obtain high‐performance single‐junction devices. It promotes the crystallization of PCPDTFBT polymer, thus improving the charge‐transport properties of the active layer. By combining the morphological manipulation with interfacial optimization and device engineering, the single‐junction device exhibits both good air stability and high power‐conversion efficiency (PCE, of 6.6%). This represents one of the highest PCE values for cyclopenta[2,1‐b;3,4‐b’]dithiophene (CPDT)‐based OPVs. This polymer is also utilized for constructing semitransparent solar cells and double‐junction tandem solar cells to demonstrate high PCEs of 5.0% and 8.2%, respectively.  相似文献   

5.
Although high power conversion efficiencies (PCE) have already been demonstrated in conventional structure polymer solar cells (PSCs), the development of high performance inverted structure polymer solar cells is still lagging behind despite their demonstrated superior stability and feasibility for roll‐to‐roll processing. To address this challenge, a detailed study of solution‐processed, inverted‐structure PSCs based on the blends of a low bandgap polymer, poly(indacenodithiophene‐co‐phananthrene‐quinoxaline) (PIDT‐PhanQ) and [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) as the bulk heterojunction (BHJ) layer is carried out. Comprehensive characterization and optical modeling of the resulting devices is performed to understand the effect of device geometry on photovoltaic performance. Excellent device performance can be achieved by optimizing the optical field distribution and spatial profiles of excitons generation within the active layer in different device configurations. In the inverted structure, because the peak of the excitons generation is located farther away from the electron‐collecting electrode, a higher blending ratio of fullerene is required to provide higher electron mobility in the BHJ for achieving good device performance.  相似文献   

6.
With the aim of developing high-performance flexible polymer solar cells, the preparation of flexible transparent electrodes (FTEs) via a high-throughput gravure printing process is reported. By varying the blend ratio of the mixture solvent and the concentration of the silver nanowire (AgNW) inks, the surface tension, volatilization rate, and viscosity of the AgNW ink can be tuned to meet the requirements of gravure printing process. Following this method, uniformly printed AgNW films are prepared. Highly conductive FTEs with a sheet resistance of 10.8 Ω sq−1 and a high transparency of 95.4% (excluded substrate) are achieved, which are comparable to those of indium tin oxide electrode. In comparison with the spin-coating process, the gravure printing process exhibits advantages of the ease of large-area fabrication and improved uniformity, which are attributed to better ink droplet distribution over the substrate. 0.04 cm2 polymer solar cells based on gravure-printed AgNW electrodes with PM6:Y6 as the photoactive layer show the highest power conversion efficiency (PCE) of 15.28% with an average PCE of 14.75 ± 0.35%. Owing to the good uniformity of the gravure-printed AgNW electrode, the highest PCE of 13.61% is achieved for 1 cm2 polymer solar cells based on the gravure-printed FTEs.  相似文献   

7.
Tandem solar cells (TSCs) comprising stacked narrow‐bandgap and wide‐bandgap subcells are regarded as the most promising approach to break the Shockley–Queisser limit of single‐junction solar cells. As the game‐changer in the photovoltaic community, organic–inorganic hybrid perovskites became the front‐runner candidate for mating with other efficient photovoltaic technologies in the tandem configuration for higher power conversion efficiency, by virtue of their tunable and complementary bandgaps, excellent photoelectric properties, and solution processability. In this review, a perspective that critically dilates the progress of perovskite material selection and device design for perovskite‐based TSCs, including perovskite/silicon, perovskite/copper indium gallium selenide, perovskite/perovskite, perovskite/CdTe, and perovskite/GaAs are presented. Besides, all‐inorganic perovskite CsPbI3 with high thermal stability is proposed as the top subcell in TSCs due to its suitable bandgap of ≈1.73 eV and rapidly increasing efficiency. To minimize the optical and electrical losses for high‐efficiency TSCs, the optimization of transparent electrodes, recombination layers, and the current‐matching principles are highlighted. Through big data analysis, wide‐bandgap perovskite solar cells with high open‐circuit voltage (Voc) are in dire need in further study. In the end, opportunities and challenges to realize the commercialization of TSCs, including long‐term stability, area upscaling, and mitigation of toxicity, are also envisioned.  相似文献   

8.
Organic solar cells (OSCs) have recently reached a remarkably high efficiency and become a promising technology for commercial application. However, OSCs with top efficiency are mostly processed by halogenated solvents and with additives that are not environmentally friendly, which hinders large-scale manufacture. In this study, high-performance tandem OSCs, based on polymer donors and two small-molecule acceptors with different bandgaps, are fabricated by solution processing with non-halogenated solvents without additive. Importantly, the two active layers developed from non-halogenated solvents show better phase segregation and charge transport properties, leading to superior performance than halogenated ones. As a result, a tandem OSC with high efficiency of up to 16.67% is obtained, showing unique advantages in future massive production.  相似文献   

9.
Polymer matrix is felicitously applied into the active layer and transporting layer of perovskite solar cells (PSCs) to enable a stretchable function. However, the chaotic deposition of polymer chains is the main cause for the inferior photoelectric performance. When the stretchable PSCs are in a working state, the stress cannot be removed effectively due to the random polymer chain deposition. The stress accumulation will cause irreversible damage to the stretchable PSCs. Herein, the structural bionics and patterned-meniscus coating technology are combined to print the polymer chain-oriented deposition in the stretchable PSCs. Based on this approach, the conducting polymer electrode is printed with both significant mechanical stability and conductivity. More importantly, the oriented polyurethane with self-healing property can enhance the crystal quality of perovskite films and repair perovskite cracks caused by stress destruction. Thus, the corresponding stretchable PSCs achieve a stabilized power conversion efficiency (PCE) of 20.04% (1.0 cm2) and 16.47% (9 cm2) with minor efficiency discrepancy. Notably, the stretchable PSCs can maintain 86% of the primitive PCE after 1000 cycles of bending with a stretch ratio of 30%. This directional growth of polymer chain strategy provides guidance for printing prominent-performance stretchable PSCs.  相似文献   

10.
根据电流连续性原则和光伏材料选择原则,对叠层电池的电流匹配进行了研究,结果表明,电流匹配是影响叠层电池短路电流和转换效率的重要因素之一,电流匹配可以通过调整单元电池厚度来实现,在此基础上,获得了面积为400cm^2,转移效率分别为8.28%,7.52%和6.74%的a-Si/a-Si,a-Si/a-SiGe和a-Si/A-Si/a-SiGe高效率叠层电池。  相似文献   

11.
Currently, the efficiency of perovskite solar cells (PSCs) is ≈24%. For the fabrication of such high efficiency PSCs, it is necessary to use both electron and hole transport layers to effectively separate the charges generated by light absorption of the perovskite layer and selectively transfer the separated electrons and holes. In addition to the efficiency, the materials used for transporting charges must be resilient to light, heat, and moisture to ensure long‐term stability of PSCs; furthermore, low‐cost fabrication is required to form a charge transport layer at low temperatures by a solution process. For this purpose, metal oxides are best suited as charge transport materials for PSCs because of their advantages such as low cost, long‐term stability, and high efficiency. In this Review, the metal oxide electron and hole transport materials used in PSCs are reviewed and preparation of these materials is summarized. Finally, the challenges and future research direction for metal oxide‐based charge transport materials are described.  相似文献   

12.
Stretchable organic solar cells (OSCs) simultaneously possessing high-efficiency and robust mechanical properties are ideal power generators for the emerging wearable and portable electronics. Herein, after incorporating a low amount of trimethylsiloxy terminated polydimethylsiloxane (PDMS) additive, the intrinsic stretchability of PTB7-Th:IEICO-4F bulk heterojunction (BHJ) film is greatly improved from 5% to 20% strain without sacrificing the photovoltaic performance. The intimate multi-layers stacking of OSCs is also realized with the transfer printing method assisted by electrical adhesive “glue” D-Sorbitol. The resultant devices with 84% electrode transmittance exhibit a remarkable power conversion efficiency (PCE) of 10.1%, which is among the highest efficiency for intrinsically stretchable OSCs to date. The stretchable OSCs also demonstrate the ultra-flexibility, stretchability, and mechanical robustness, which keep the PCE almost unchanged at small bending radium of 2 mm for 300 times bending cycles and retain 86.7% PCE under tensile strain as large as 20% for the devices with 70% electrode transmittance. The results provide a universal method to fabricate highly efficient intrinsically stretchable OSCs.  相似文献   

13.
Here, a near-infrared (NIR)-absorbing small-molecule acceptor (SMA) Y-SeNF with strong intermolecular interaction and crystallinity is developed by combining selenophene-fused core with naphthalene-containing end-group, and then as a custom-tailor guest acceptor is incorporated into the binary PM6:L8-BO host system. Y-SeNF shows a 65 nm red-shifted absorption compared to L8-BO. Thanks to the strong crystallinity and intermolecular interaction of Y-SeNF, the morphology of PM6:L8-BO:Y-SeNF can be precisely regulated by introducing Y-SeNF, achieving improved charge-transporting and suppressed non-radiative energy loss. Consequently, ternary polymer solar cells (PSCs) offer an impressive device efficiency of 19.28% with both high photovoltage (0.873 V) and photocurrent (27.88 mA cm−2), which is one of the highest efficiencies in reported single-junction PSCs. Notably, ternary PSC has excellent stability under maximum-power-point tracking for even over 200 h, which is better than its parental binary devices. The study provides a novel strategy to construct NIR-absorbing SMA for efficient and stable PSCs toward practical applications.  相似文献   

14.
Crystallizable, high‐mobility conjugated polymers have been employed as secondary donor materials in ternary polymer solar cells in order to improve device efficiency by broadening their spectral response range and enhancing charge dissociation and transport. Here, contrasting effects of two crystallizable polymers, namely, PffBT4T‐2OD and PDPP2TBT, in determining the efficiency improvements in PTB7‐Th:PC71BM host blends are demonstrated. A notable power conversion efficiency of 11% can be obtained by introducing 10% PffBT4T‐2OD (relative to PTB7‐Th), while the efficiency of PDPP2TBT‐incorporated ternary devices decreases dramatically despite an enhancement in hole mobility and light absorption. Blend morphology studies suggest that both PffBT4T‐2OD and PDPP2TBT are well dissolved within the host PTB7‐Th phase and facilitate an increased degree of phase separation between polymer and fullerene domains. While negligible charge transfer is determined in binary blends of each polymer mixture, effective energy transfer is identified from PffBT4T‐2OD to PTB7‐Th that contributes to an improvement in ternary blend device efficiency. In contrast, energy transfer from PTB7‐Th to PDPP2TBT worsens the efficiency of the ternary device due to inefficient charge dissociation between PDPP2TBT and PC71BM.  相似文献   

15.
One of the most promising approaches to achieve high‐performance polymer solar cells (PSCs) is to develop nonfullerene small molecule acceptors (SMAs) with an absorption extending to the near‐infrared (NIR) region. In this work, two novel SMAs, namely, BTTIC and BTOIC, are designed and synthesized, with optical bandgaps (Egopt) of 1.47 and 1.39 eV, respectively. Desipte the narrow Egopt, the PBDB‐T:BTTIC‐ and PBDB‐T:BTOIC‐based PSCs can maintain high VOCs of over 0.90 and 0.86 V, respectively, with low energy losses (Eloss) < 0.6 eV. Meanwhile, due to the favorable morphology of the PBDB‐T:BTTIC blend, balanced carrier mobilities are achieved. The high external quantum efficiencies enable a high power conversion efficiency (PCE) up to 13.18% for the PBDB‐T:BTTIC‐based PSCs. In comparison, BTOIC shows an excessive crystallization propensity owing to its oxyalkyl side groups, which eventually leads to a relatively low PCE for the PBDB‐T:BTOIC‐based PSCs. Overall, this work provides insights into the design of novel NIR‐absorbing SMAs for nonfullerene PSCs.  相似文献   

16.
Despite the tremendous development of different high-performing photovoltaic systems in non-fullerene polymer solar cells (PSCs), improving their performance is still highly demanding. Herein, an effective and compatible strategy, i.e., binary-solvent-chlorinated indium tin oxide (ITO) anode, is presented to improve the device performance of the state-of-the-art photoactive systems. Although both ODCB (1,2-dichlorobenzene) solvent- and ODCB:H2O2 (hydrogen peroxide) co-solvent-chlorinated ITO (ITO-Cl-ODCB and ITO-Cl-ODCB:H2O2) show similar optical transmittance, electrical conductivities, and work function values, ITO-Cl-ODCB:H2O2 exhibits higher Cl surface coverage and more suitable surface free energy close to the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)-buffered ITO anode (ITO/PEDOT:PSS). As a direct consequence, the performance of ITO-Cl-ODCB-based PBDB-T-2F:BTP-eC9:PC71BM PSCs is comparable as the bare ITO-based devices. In contrast, the performance of ITO-Cl-ODCB:H2O2-based devices with both small and the scaled-up areas significantly surpass the ITO/PEDOT:PSS-based devices. Furthermore, detailed experimental studies are conducted linking optical property, blend morphology, and physical dynamics to find the reasons for the performance difference. By applying the ITO-Cl-ODCB:H2O2 anode to six other photovoltaic systems, the device efficiencies are enhanced by 3.6–6.2% relative to those of the ITO/PEDOT:PSS-based control devices, which validates its great application potential of co-solvent-modified ITO anode employed into PEDOT:PSS-free PSCs.  相似文献   

17.
A series of polymers containing benzo[1,2‐b:4,5‐b′]dithiophene and N‐alkylthieno[3,4‐c]pyrrole‐4,6‐dione are designed. By incorporating different alkylthienyl side chains, the fill factor (FF) and open circuit voltage (Voc) of the copolymers are further improved. The experimental results and theoretical calculations show that the size and topology of the side chains can influence the polymer solubility, energy levels, and intermolecular packing by altering the molecular coplanarity. As a result of improved morphology and fine‐tuned energy levels, an increased FF and a high Voc of 1.00 V are achieved, as well as a power conversion efficiency of 6.17%, which is the highest efficiency ever reported for polymer solar cells with a Voc over 1 V.  相似文献   

18.
In this paper, two vacuum processed single heterojunction organic solar cells with complementary absorption are described and the construction and optimization of tandem solar cells based on the combination of these heterojunctions demonstrated. The red‐absorbing heterojunction consists of C60 and a fluorinated zinc phthalocyanine derivative (F4‐ZnPc) that leads to a 0.1–0.15 V higher open circuit voltage Voc than the commonly used ZnPc. The second heterojunction incorporates C60 and a dicyanovinyl‐capped sexithiophene derivative (DCV6T) that mainly absorbs in the green. The combination of both heterojunctions into one tandem solar cell leads to an absorption over the whole visible range of the sun spectrum. Thickness variations of the transparent p‐doped optical spacer between both subcells in the tandem solar cell is shown to lead to a significant change in short circuit current density jsc due to optical interference effects, whereas Voc and fill factor are hardly affected. The maximum efficiency η of about 5.6% is found for a spacer thickness of 150‐165 nm. Based on the optimized 165nm thick spacer, effects of intensity and angle of illumination, and temperature on a tandem device are investigated. Variations in illumination intensity lead to a linear change in jsc over three orders of magnitude and a nearly constant η in the range of 30 to 310 mW cm?2. Despite the stacked heterojunctions, the performance of the tandem device is robust against different illumination angles: jsc and η closely follow a cosine behavior between 0° and 70°. Investigations of the temperature behavior of the tandem device show an increase in η of 0.016 percentage points per Kelvin between ?20 °C and 25 °C followed by a plateau up to 50 °C. Finally, further optimization of the tandem stack results in a certified η of (6.07 ± 0.24)% on (1.9893 ± 0.0060)cm2 (Fraunhofer ISE), i.e., areas large enough to be of relevance for modules.  相似文献   

19.
介绍了体异质结聚合物太阳电池的基本原理,并分析了限制体异质结有机太阳电池转化效率的因素。从提高激子的产生效率及其解离效率、电极对电荷的引出效率、电池的稳定性以及电池的光谱吸收范围四个方面,综述了提高体异质结聚合物太阳电池能量转化效率的方法。  相似文献   

20.
There has been rapid progress in solution‐processed organic solar cells (OSCs) and perovskite solar cells (PVSCs) toward low‐cost and high‐throughput photovoltaic technology. Carrier (electron and hole) transport layers (CTLs) play a critical role in boosting their efficiency and long‐time stability. Solution‐processed metal oxide nanocrystals (SMONCs) as a promising CTL candidate, featuring robust process conditions, low‐cost, tunable optoelectronic properties, and intrinsic stability, offer unique advantages for realizing cost‐effective, high‐performance, large‐area, and mechanically flexible photovoltaic devices. In this review, the recent development of SMONC‐based CTLs in OSCs and PVSCs is summarized. This paper starts with the discussion of synthesis approaches of SMONCs. Then, a broad range of SMONC‐based CTLs, including hole transport layers and electron transport layers, are reviewed, in which an emphasis is placed on the improvement of the efficiency and device stability. Finally, for the better understanding of the challenges and opportunities on SMONC‐based CTLs, several strategies and perspectives are outlined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号