首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantum dots (QDs) luminescent films have broad applications in optoelectronics, solid‐state light‐emitting diodes (LEDs), and optical devices. This work reports the fabrication of multicolor‐light‐emitting ultrathin films (UTFs) with 2D architecture based on CdTe QDs and MgAl layered double hydroxide (LDH) nanosheets via the layer‐by‐layer deposition technique. The hybrid UTFs possess periodic layered structure, which is verified by X‐ray diffraction. Tunable light emission in the red‐green region is obtained by changing the particle size of QDs (CdTe‐535 QDs and CdTe‐635 QDs with green and red emision respectively), assembly cycle number, and sequence. Moreover, energy transfer between CdTe‐535 QDs and CdTe‐635 QDs occurs based on the fluorescence resonance energy transfer (FRET), which greatly enhances the fluorescence efficiency of CdTe‐635 QDs. In addition, a theoretical study based on the Förster theory and molecular dynamics (MD) simulations demonstrates that CdTe QDs/LDH UTFs exhibit superior capability of energy transfer owing to the ordered dispersion of QDs in the 2D LDH matrix, which agrees well with the experimental results. Therefore, this provides a facile approach for the design and fabrication of inorganic‐inorganic luminescent UTFs with largely enhanced luminescence efficiency as well as stability, which can be potentially applied in multicolor optical and optoelectronic devices.  相似文献   

2.
Nanometer‐scale optical waveguides are attractive due to their potential applicability in photonic integration, optoelectronic communication, and optical sensors. Nanoscale white light‐emitting and/or polychromatic optical waveguides are desired for miniature white‐light generators in microphotonic circuits. Here, polychromatic (i.e., blue, green, and red) optical waveguiding characteristics are presented using a novel hybrid composite of highly crystalline blue light‐emitting organic nanowires (NWs) combined with blue, green, and red CdSe/ZnS quantum dots (QDs). Near white‐color waveguiding is achieved for organic NWs hybridized with green and red QDs. Light, emitted from QDs, can be transferred to the organic NW and then optically waveguided through highly packed π‐conjugated organic molecules in the NW with different decay characteristics. Remote biosensing using dye‐attached biomaterials is presented by adapting the transportation of QD‐emitted light through the organic NW.  相似文献   

3.
Large‐area, ultrathin light‐emitting devices currently inspire architects and interior and automotive designers all over the world. Light‐emitting electrochemical cells (LECs) and quantum dot light‐emitting diodes (QD‐LEDs) belong to the most promising next‐generation device concepts for future flexible and large‐area lighting technologies. Both concepts incorporate solution‐based fabrication techniques, which makes them attractive for low cost applications based on, for example, roll‐to‐roll fabrication or inkjet printing. However, both concepts have unique benefits that justify their appeal. LECs comprise ionic species in the active layer, which leads to the omission of additional organic charge injection and transport layers and reactive cathode materials, thus LECs impress with their simple device architecture. QD‐LEDs impress with purity and opulence of available colors: colloidal quantum dots (QDs) are semiconducting nanocrystals that show high yield light emission, which can be easily tuned over the whole visible spectrum by material composition and size. Emerging technologies that unite the potential of both concepts (LEC and QD‐LED) are covered, either by extending a typical LEC architecture with additional QDs, or by replacing the entire organic LEC emitter with QDs or perovskite nanocrystals, still keeping the easy LEC setup featured by the incorporation of mobile ions.  相似文献   

4.
We investigate a new method for forming large‐area (> cm2) ordered monolayers of colloidal nanocrystal quantum dots (QDs). The QD thin films are formed in a single step by spin‐casting a mixed solution of aromatic organic materials and aliphatically capped QDs. The two different materials phase separate during solvent drying, and for a predefined set of conditions the QDs can assemble into hexagonally close‐packed crystalline domains. We demonstrate the robustness and flexibility of this phase‐separation process, as well as how the properties of the resulting films can be controlled in a precise and repeatable manner. Solution concentration, solvent ratio, QD size distribution, and QD aspect ratio affect the morphology of the cast thin‐film structure. Controlling all of these factors allows the creation of colloidal‐crystal domains that are square micrometers in size, containing tens of thousands of individual nanocrystals per grain. Such fabrication of large‐area, engineered layers of nanoscale materials brings the beneficial properties of inorganic QDs into the realm of nanotechnology. For example, this technique has already enabled significant improvements in the performance of QD light‐emitting devices.  相似文献   

5.
A strategy by encapsulating organic dyes into the pores of a luminescent metal‐organic framework (MOF) is developed to achieve white‐light‐emitting phosphor. Both the red‐light emitting dye 4‐(p‐dimethylaminostyryl)‐1‐methylpyridinium ( DSM ) and the green‐light emitting dye acriflavine ( AF ) are encapsulated into a blue‐emitting anionic MOF ZJU‐28 through an ion‐exchange process to yield the MOF?dye composite ZJU‐28?DSM/AF . The emission color of the obtained composite can be easily modulated by simply adjusting the amount and component of dyes. With careful adjustment of the relative concentration of the dyes DSM and AF , the resulting ZJU‐28?DSM/AF (0.02 wt% DSM , 0.06 wt% AF ) exhibits a broadband white emission with ideal CIE coordinates of (0.34, 0.32), high color‐rendering index value of 91, and moderate correlated color temperature value of 5327 K. Such a strategy can be easily expanded to other luminescent MOFs and dyes, thus opening a new perspective for the development of white light emitting materials.  相似文献   

6.
The development of π‐conjugated molecular systems with high‐efficiency generation of UV and blue light plays an important role in the fields of light‐emitting diodes, fluorescent imaging, and information storage. Herein, supramolecular construction of solid‐state UV/blue luminescent materials are assembled using 2,5‐diphenyloxazole (DPO) with four typical co‐assembled building blocks (1,4‐diiodotetrafluorobenzene, 4‐bromotetrafluorobenzene carboxylic acid, pentafluorophenol, and octafluoronaphthalene). Compared with the pristine DPO sample, the as‐prepared two‐component molecular materials feature ease of crystallization, high crystallinity, enhanced thermal stability and tunable luminescence properties (such as emissive wavelength, color, fluorescence lifetime, and photoluminescence quantum yield) as well as multicolor polarized emission in the UV/blue region. Moreover, pump‐enhanced luminescence and reversible mechanochromic fluorescence (MCF) properties can also be obtained for these molecular solids, which are absent for the pristine DPO sample. Therefore, this work provides a procedure for the facile self‐assembly of ordered two‐component molecular materials with tunable UV/blue luminescence properties, which have potential application in the areas of light‐emitting displays, polarized emission, frequency doubling, and luminescent sensors.  相似文献   

7.
The charge transport and recombination in white‐emitting polymer light‐ emitting diodes (PLEDs) are studied. The PLED investigated has a single emissive layer consisting of a copolymer in which a green and red dye are incorporated in a blue backbone. From single‐carrier devices the effect of the green‐ and red‐emitting dyes on the hole and electron transport is determined. The red dye acts as a deep electron trap thereby strongly reducing the electron transport. By incorporating trap‐assisted recombination for the red emission and bimolecular Langevin recombination for the blue emission, the current and light output of the white PLED can be consistently described. The color shift of single‐layer white‐emitting PLEDs can be explained by the different voltage dependencies of trap‐assisted and bimolecular recombination.  相似文献   

8.
Cesium lead halide quantum dots (QDs) have tunable photoluminescence that is capable of covering the entire visible spectrum and have high quantum yields, which make them a new fluorescent materials for various applications. Here, the synthesis of CsPbX3 (X = Cl, Br, I, or mixed Cl/Br and Br/I) QDs by direct ion reactions in ether solvents is reported, and for the first time the synergetic effects of solvent polarity and reaction temperature on the nucleation and growth of QDs are demonstrated. The use of solvent with a low polarity enables controlled growth of QDs, which facilitates the synthesis of high‐quality CsPbX3 QDs with broadly tunable luminescence, narrow emission width, and high quantum yield. A QD white LED (WLED) is demonstrated by coating the highly fluorescent green‐emissive CsPbBr3 QDs together with red phosphors on a blue InGaN chip, which presents excellent warm white light emission with a high rendering index of 93.2 and color temperature of 5447 K, suggesting the potential applications of highly fluorescent cesium lead halide perovskite QDs as an alternative color converter in the fabrication of WLEDs.  相似文献   

9.
White light phosphors have many potential applications such as solid‐state lighting, full color displays, light source for plant growth, and crop improvement. However, most of these phosphors are rare‐earth‐based materials which are costly and would be facing the challenge of resource issue due to the extremely low abundance of these elements on earth. A new white color composite consisted of a graphitic‐phase nitrogen carbon (g‐C3N4) treated with nitric acid and copper‐cysteamine Cu3Cl(SR)2 is reported herein. Under a single wavelength excitation at 365 nm, these two materials show a strong blue and red luminescence, respectively. It is interesting to find that the white light emission with a quantum yield of 20% can be obtained by mixing these two self‐activated luminescent materials at the weight ratio of 1:1.67. Using a 365 nm near‐ultraviolet chip for excitation, the composite produces a white light‐emitting diode that exhibits an excellent color rendering index of 94.3. These white‐emitting materials are environment friendly, easy to synthesize, and cost‐effective. More importantly, this will potentially eliminate the challenge of rare earth resources. Furthermore, a single chip is used for excitation instead of a multichip, which can greatly reduce the cost of the devices.  相似文献   

10.
Highly efficient bright green‐emitting Zn?Ag?In?S (ZAIS)/Zn?In?S (ZIS)/ZnS alloy core/inner‐shell/shell quantum dots (QDs) are synthesized using a multistep hot injection method with a highly concentrated zinc acetate dihydrate precursor. ZAIS/ZIS/ZnS QD growth is realized via five sequential steps: a core growth process, a two‐step alloying–shelling process, and a two‐step shelling process. To enhance the photoluminescence quantum yield (PLQY), a ZIS inner‐shell is synthesized and added with a band gap located between the ZAIS alloy‐core and ZnS shell using a strong exothermic reaction. The synthesized ZAIS/ZIS/ZnS QDs shows a high PLQY of 87% with peak wavelength of 501 nm. Tripackage white down‐converted light‐emitting diodes (DC‐LEDs) are realized using an InGaN blue (B) LED, a green (G) ZAIS/ZIS/ZS QD‐based DC‐LED, and a red (R) Zn?Cu?In?S/ZnS QD‐based DC‐LED with correlated color temperature from 2700 to 10 000 K. The red, green, and blue tripackage white DC‐LEDs exhibit high luminous efficacy of 72 lm W?1 and excellent color qualities (color rendering index (CRI, Ra) = 95 and the special CRI for red (R9) = 93) at 2700 K.  相似文献   

11.
Because of outstanding optical properties and non‐vacuum solution processability of colloidal quantum dot (QD) semiconductors, many researchers have developed various light emitting diodes (LEDs) using QD materials. Until now, the Cd‐based QD‐LEDs have shown excellent properties, but the eco‐friendly QD semiconductors have attracted many attentions due to the environmental regulation. And, since there are many issues about the reliability of conventional QD‐LEDs with organic charge transport layers, a stable charge transport layer in various conditions must be developed for this reason. This study proposes the organic/inorganic hybrid QD‐LEDs with Cd‐free InP QDs as light emitting layer and inorganic ZrO2 nanoparticles as electron transport layer. The QD‐LED with bottom emission structure shows the luminescence of 530 cd m?2 and the current efficiency of 1 cd/A. To realize the transparent QD‐LED display, the two‐step sputtering process of indium zinc oxide (IZO) top electrode is applied to the devices and this study could fabricate the transparent QD‐LED device with the transmittance of more than 74% for whole device array. And when the IZO top electrode with high work‐function is applied to top transparent anode, the device could maintain the current efficiency within the driving voltage range without well‐known roll‐off phenomenon in QD‐LED devices.  相似文献   

12.
High‐quality violet‐blue emitting ZnxCd1‐xS/ZnS core/shell quantum dots (QDs) are synthesized by a new method, called “nucleation at low temperature/shell growth at high temperature”. The resulting nearly monodisperse ZnxCd1‐xS/ZnS core/shell QDs have high PL quantum yield (near to 100%), high color purity (FWHM) <25 nm), good color tunability in the violet‐blue optical window from 400 to 470 nm, and good chemical/photochemical stability. More importantly, the new well‐established protocols are easy to apply to large‐scale synthesis; around 37 g ZnxCd1‐xS/ZnS core/shell QDs can be easily synthesized in one batch reaction. Highly efficient deep‐blue quantum dot‐based light‐emitting diodes (QD‐LEDs) are demonstrated by employing the ZnxCd1‐xS/ZnS core/shell QDs as emitters. The bright and efficient QD‐LEDs show a maximum luminance up to 4100 cd m?2, and peak external quantum efficiency (EQE) of 3.8%, corresponding to 1.13 cd A?1 in luminous efficiency. Such high value of the peak EQE can be comparable with OLED technology. These results signify a remarkable progress, not only in the synthesis of high‐quality QDs but also in QD‐LEDs that offer a practicle platform for the realization of QD‐based violet‐blue display and lighting.  相似文献   

13.
采用水相法制备了颗粒尺寸为3.75nm的硒化锌(ZnSe)量子点,采用表面活性剂将ZnSe量子点转移到有机相聚(2-甲氧基-5-辛氧基)对苯乙炔(MO-PPV)中,获得了MO-PPV/ZnSe复合材料。通过对MO-PPV和ZnSe量子点的吸收光谱(ABS)和光致发光(PL)光谱的研究发现,随着ZnSe量子点掺杂浓度的提高,复合材料的发光强度明显增强,发光峰位置出现了蓝移。当ZnSe∶MO-PPV的质量比为1∶0.181时,发光峰位置蓝移10nm。结果表明,MO-PPV与ZnSe量子点之间存在着能量传递,这是导致MO-PPV/ZnSe量子点复合材料具有PL增强的重要原因。  相似文献   

14.
The synthesis of two cyan color (blue and green emission) displaying high molecular weight 2,6‐bis(pyrazolyl)pyridine‐co‐octylated phenylethynyl conjugated polymers (CPs) is presented. The conjugated polymers are solution‐processed to prepare spin coated thin films and self‐assembled nano/microscale spheres, exhibiting cyan color under UV. Additionally, the metal coordinating ability of the 2,6‐bis(pyrazolyl)pyridine available on the surface of the CP films and spheres is exploited to prepare red emitting Eu(III) metal ion containing conjugated polymer (MCCP) layer. The fabricated hybrid (CP/MCCP) films and spheres exhibit bright white‐light under UV exposure. The Commission Internationale de l'Eclairage (CIE) coordinates are found to be (x = 0.33, y = 0.37) for hybrid films and (x = 0.30, y = 0.35) for hybrid spheres. These values are almost close to the designated CIE coordinates for ideal white‐light color (x = 0.33, y = 0.33). This easy and efficient fabrication technique to generate white‐color displaying films and nano/microspheres signify an important method in bottom‐up nanotechnology of conjugated polymer based hybrid solid state assemblies.  相似文献   

15.
Inkjet printing is used to produce well‐defined patterns of dots (with diameters of ca. 120 μm) that are composed of luminescent CdTe nanocrystals (NCs) embedded within a poly(vinylalcohol) (PVA) matrix. Addition of ethylene glycol (1–2 vol %) to the aqueous solution of CdTe NCs suppresses the well‐known ring‐formation effect in inkjet printing leading to exceptionally uniform dots. Atomic force microscopy characterization reveals that in the CdTe NC films the particle–particle interaction could be prevented using inert PVA as a matrix. Combinatorial libraries of CdTe NC–PVA composites with variable NC sizes and polymer/NC ratios are prepared using inkjet printing. These libraries are subsequently characterized using a UV/fluorescence plate reader to determine their luminescent properties. Energy transfer from green‐light‐emitting to red‐light‐emitting CdTe NCs in the composite containing green‐ (2.6 nm diameter) and red‐emitting (3.5 nm diameter) NCs are demonstrated.  相似文献   

16.
Efficient white‐light‐emitting diodes (WLEDs) have been developed using a polyfluorene‐type blue‐emitting conjugated polymer doped with green and red phosphorescent dyes. The emission spectrum of the conjugated polymer, which has a very high luminescent efficiency, shows a large spectral overlap with the absorbance of green and red iridium complexes. Also, efficient energy transfer from the conjugated polymer to the iridium complexes is observed. Poly(N‐vinyl carbazole) is used to improve the miscibility between conjugated polymer and iridium complexes because of their poor chemical compatibility and phase separation. A white emission spectrum is easily obtained by varying the contents of the three materials and controlling the phase morphology. Moreover, these WLEDs show a voltage‐independent electroluminescence owing to the threshold and driving voltage of the three materials being similar as a result of energy transfer.  相似文献   

17.
Europium and terbium trisdipicolinate complexes are inkjet printed onto paper with commercially available desktop inkjet printers. Together with a commercial blue luminescent ink, the red‐emitting luminescent ink containing europium and the green‐emitting luminescent ink containing terbium are used to reproduce accurate full color images that are invisible under white light and appear under a 254 nm UV light. Such invisible luminescent images are attractive anti‐counterfeiting security features. The luminescent prints have a color range (gamut) nearly as wide as the gamut of a standard sRGB display. The gamut of the luminescent prints is determined by relying on a simple model predicting the relative spectral radiant emittances of any printed luminescent color halftone. The model is also used to establish the correspondence between the surface coverages of the printed luminescent inks and the emitted color of these luminescent halftones. The accuracy of the spectral prediction model is very good and can be rationalized by the absence of quenching when the luminescent lanthanide complexes are printed in superposition with the other luminescent materials.  相似文献   

18.
A procedure for formation of CdSe quantum dots (QDs) in a ZnSe matrix is suggested. The procedure is based on the introduction of a CdTe submonolayer stressor deposited on the matrix surface just before deposition of the material of the QDs. (For CdTe/ZnSe structure, the relative lattice mismatch is Δa/a ≈ 14%.) The stressor forms small strained islands at the ZnSe surface, thus producing local fields of high elastic stresses controlling the process of the self-assembling of the QDs. According to the data of transmission electron microscopy, this procedure allows a considerable increase in the surface density of QDs, with a certain decrease in their lateral dimensions (down to 4.5 ± 1.5 nm). In the photoluminescence spectra, a noticeable (~150 meV) shift of the peak to longer wavelengths from the position of the reference CdSe/ZnSe QD structure is observed. The shift is due to some transformation of the morphology of the QDs and an increase in the Cd content in the QDs. Comprehensive studies of the nanostructures by recording and analyzing the excitation spectra of photoluminescence, the time-resolved photoluminescence spectra, and the cathodoluminescence spectra show that the emission spectra involve two types of optical transitions, namely, the type-I transitions in the CdSeTe/ZnSe QDs and the type-II transitions caused mainly by the low cadmium content (Zn,Cd)(Se,Te)/ZnSe layer formed between the QDs.  相似文献   

19.
Micro‐ and nanostructuring of conjugated polymers are of critical importance in the fabrication of molecular electronic devices as well as photonic and bandgap materials. The present report delineates the single‐step self‐organization of highly ordered structures of functionalized poly(p‐phenylene)s without the aid of either a controlled environment or expensive fabrication methodologies. Microporous films of these polymers, with a honeycomb pattern, were prepared by direct spreading of the dilute polymer solution on various substrates, such as glass, quartz, silicon wafer, indium tin oxide, gold‐coated mica, and water, under ambient conditions. The polymeric film obtained from C12PPPOH comprises highly periodic, defect‐free structures with blue‐light‐emitting properties. It is expected that such microstructured, conjugated polymeric films will have interesting applications in photonic and optoelectronic devices. The ability of the polymer to template the facile micropatterning of nanomaterials gives rise to hybrid films with very good spatial dispersion of the carbon nanotubes.  相似文献   

20.
Colloidal quantum‐dot light‐emitting diodes (QDLEDs) with the HfO2/SiO2‐distributed Bragg reflector (DBR) structure are fabricated using a pulsed spray coating method. Pixelated RGB arrays, 2‐in. wafer‐scale white light emission, and an integrated small footprint white light device are demonstrated. The experimental results show that the intensity of red, green, and blue (RGB) emission exhibited considerable enhancement because of the high reflectivity in the UV region by the DBR structure, which subsequently increases the use in the UV optical pumping of RGB QDs. A pulsed spray coating method is crucial in providing uniform RGB layers, and the polydimethylsiloxane (PDMS) film is used as the interface layer between each RGB color to avoid cross‐contamination and self‐assembly of QDs. Furthermore, the chromaticity coordinates of QDLEDs with the DBR structure remain constant under various pumping powers in the large area sample, whereas a larger shift toward high color temperatures is observed in the integrated device. The resulting color gamut of the proposed QDLEDs covers an area 1.2 times larger than that of the NTSC standard, which is favorable for the next generation of high‐quality display technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号