首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amorphous phases are commonly found in nanostructured plasma‐sprayed coatings. Nonetheless, the role of these phases in the resulting coatings’ properties has remained uninvestigated until now. In the present work, pseudo‐eutectic coatings—based on alumina and 8 wt% yttria‐stabilized zirconia (YSZ)—containing amorphous phases are produced using a suspension‐plasma‐spray process. These composite materials are a potential choice for thermal‐barrier coating applications. The role of the amorphous phase on the performance of the coatings is investigated before and after heat treatment. Results show that, although the amorphous phases in untreated coatings reduce the thermal conductivity, they impair the mechanical properties. However, treatment above the crystallization temperature leads to better mechanical properties as well as enhanced high‐temperature stability of the resulting nanostructure. Moreover, the role of alumina as a stabilizer of high‐temperature YSZ phases (tetragonal and cubic) is confirmed and the high‐temperature phase stability of the alumina–YSZ composite is demonstrated. The amorphous phases are found to crystallize into their corresponding high‐temperature stable phases; i. e., α‐alumina and tetragonal zirconia.  相似文献   

2.
Collagen biomineralization is a complex process and the controlling factors at the molecular level are still not well understood. A particularly high level of spatial control over collagen mineralization is evident in the anchorage of teeth to the jawbone by the periodontal ligament. Here, unmineralized ligament collagen fibrils become mineralized at an extremely sharp mineralization front in the root of the tooth. A model of collagen biomineralization based on demineralized cryosections of mouse molars in the bone socket is presented. When exposed to metastable calcium and phosphate‐containing solutions, mineral re‐deposits selectively into the natively mineralized tissues with high fidelity, demonstrating that the extracellular matrix retains sufficient information to control the rate of mineralization at the tissue level. While solutions of simulated bodily fluid produce amorphous calcium phosphate within the tissue section, a more highly supersaturated solution stabilized with polyaspartic acid produces oriented, crystalline calcium phosphate with diffraction patterns consistent with hydroxyapatite. The model thus replicates both spatial control of mineral deposition, as well as the matrix‐mineral relationships of natively mineralized collagen fibrils, and can be used to elucidate roles of specific biomolecules in the highly controlled process of collagen biomineralization. This knowledge will be critical in the design of collagen‐based scaffolds for tissue engineering of hard‐soft tissue interfaces.  相似文献   

3.
Single‐crystalline thin films of the homologous series InGaO3(ZnO)m (where m is an integer) are fabricated by the reactive solid‐phase epitaxy (R‐SPE) method. Specifically, the role of ZnO as epitaxial initiator layer for the growth mechanism is clarified. High‐temperature annealing of bilayer films consisting of an amorphous InGaO3(ZnO)5 layer deposited at room temperature and an epitaxial ZnO layer on yttria‐stabilized zirconia (YSZ) substrate allows for the growth of single‐crystalline film with controlled chemical composition. The epitaxial ZnO thin layer plays an essential role in determining the crystallographic orientation, while the ratio of the thickness of both layers controls the film composition.  相似文献   

4.
The development of long‐lasting zirconia‐based ceramics for implants, which are not prone to hydrothermal aging, is not satisfactorily solved. Therefore, this study is conceived as an overall evaluation screening of novel ceria‐stabilized zirconia–alumina–aluminate composite ceramics (ZA8Sr8‐Ce11) with different surface topographies for use in clinical applications. Ceria‐stabilized zirconia is chosen as the matrix for the composite material, due to its lower susceptibility to aging than yttria‐stabilized zirconia (3Y‐TZP). This assessment is carried out on three preclinical investigation levels, indicating an overall biocompatibility of ceria‐stabilized zirconia‐based ceramics, both in vitro and in vivo. Long‐term attachment and mineralized extracellular matrix (ECM) deposition of primary osteoblasts are the most distinct on porous ZA8Sr8‐Ce11p surfaces, while ECM attachment on 3Y‐TZP and ZA8Sr8‐Ce11 with compact surface texture is poor. In this regard, the animal study confirms the porous ZA8Sr8‐Ce11p to be the most favorable material, showing the highest bone‐to‐implant contact values and implant stability post implantation in comparison with control groups. Moreover, the microbiological evaluation reveals no favoritism of biofilm formation on the porous ZA8Sr8‐Ce11p when compared to a smooth control surface. Hence, together with the in vitro in vivo assessment analogy, the promising clinical potential of this novel ZA8Sr8‐Ce11 as an implant material is demonstrated.  相似文献   

5.
Non‐invasive imaging holds significant potential for implementation in tissue engineering. It can be used to monitor the localization and function of tissue‐engineered implants, as well as their resorption and remodelling. Thus far, however, the vast majority of effort in this area of research have focused on the use of ultrasmall super‐paramagnetic iron oxide (USPIO) nanoparticle‐labeled cells, colonizing the scaffolds, to indirectly image the implant material. Reasoning that directly labeling scaffold materials might be more beneficial (enabling imaging also in the case of non‐cellularized implants), more informative (enabling the non‐invasive visualization and quantification of scaffold degradation), and easier to translate into the clinic (cell‐free materials are less complex from a regulatory point‐of‐view), three different types of USPIO nanoparticles are prepared and incorporated both passively and actively (via chemical conjugation; during collagen crosslinking) into collagen‐based scaffold materials. The amount of USPIO incorporated into the scaffolds is optimized, and correlated with MR signal intensity, showing that the labeled scaffolds are highly biocompatible, and that scaffold degradation can be visualized using MRI. This provides an initial proof‐of‐principle for the in vivo visualization of the scaffolds. Consequently, USPIO‐labeled scaffold materials seem to be highly suitable for image‐guided tissue engineering applications.  相似文献   

6.
Long‐term survival and success of artificial tissue constructs depend greatly on vascularization. Endothelial‐cell (EC) differentiation and vasculature formation are dependent on spatiotemporal cues in the extracellular matrix that dynamically interact with cells; a process that is difficult to reproduce in artificial systems. Here, a novel bifunctional peptide is presented that mimics matrix‐bound vascular endothelial growth factor (VEGF) which can be used to encode spatially controlled angiogenic signals in collagen scaffolds. The peptide is comprised of a collagen mimetic domain that was previously reported to bind to type I collagen by a unique hybridization mechanism, and a VEGF‐mimetic domain with pro‐angiogenic activity. Circular dichroism and collagen‐binding studies confirm the triple‐helical structure and the collagen binding affinity of the collagen‐mimetic domain, and EC‐culture studies demonstrate the peptide's ability to induce endothelial cell morphogenesis and network formation as a matrix‐bound factor in 2D and 3D collagen scaffolds. Spatial modification of collagen substrates is also shown with this peptide, which allows localized EC activation and network formation. These results demonstrate that the peptide can be used to present spatially directed angiogenic cues in collagen scaffolds, which may be useful for engineering organized microvasculature.  相似文献   

7.
La0.6Sr0.4CoO3–δ (LSC) thin‐film electrodes are prepared on yttria‐stabilized zirconia (YSZ) substrates by pulsed laser deposition at different deposition temperatures. The decrease of the film crystallinity, occurring when the deposition temperature is lowered, is accompanied by a strong increase of the electrochemical oxygen exchange rate of LSC. For more or less X‐ray diffraction (XRD)‐amorphous electrodes deposited between ca. 340 and 510 °C polarization resistances as low as 0.1 Ω cm2 can be obtained at 600 °C. Such films also exhibit the best stability of the polarization resistance while electrodes deposited at higher temperatures show a strong and fast degradation of the electrochemical kinetics (thermal deactivation). Possible reasons for this behavior and consequences with respect to the preparation of high‐performance solid oxide fuel cell (SOFC) cathodes are discussed.  相似文献   

8.
The crystallization and microstuctural evolution upon thermal treatment of yttria‐stabilized zirconia (YSZ, Zr0.85Y0.15O1‐δ) thin films deposited by spray pyrolysis at 370 °C are investigated. The as‐deposited YSZ films are mainly amorphous with a few crystallites of 3 nm in diameter and crystallize in the temperature range from 400 °C to 900 °C. Fully crystalline YSZ thin films are obtained after heating to 900 °C or by isothermal dwells for at least 17 h at a temperature as low as 600 °C. Three exothermic heat releasing processes with activation energies are assigned to the crystallization and the oxidation of residuals from the precursor. Microporosity develops during crystallization and mass loss. During crystallization the microstrain decreases from 4% to less than 1%. Simultaneously, the average grain size increases from 3 nm to 10 nm. The tetragonal phase content of the YSZ thin film increases with increasing temperature and isothermal dwell time. Based on these data, gentle processing conditions can be designed for zirconia based thin films, which meet the requirements for Si‐based microfabrication of miniaturized electrochemical devices such as micro‐solid oxide fuel cells or sensors.  相似文献   

9.
Agglomerated Pt thin films have been proposed as electrodes for electrochemical devices like micro‐solid oxide fuel cells (μ‐SOFCs) operating at low temperatures. However, comprehensive studies elucidating the interplay between agglomeration state and electrochemical properties are lacking. In this contribution the electrochemical performance of agglomerated and “dense” Pt thin film electrodes on yttria‐stabilized‐zirconia (YSZ) is correlated with their microstructural characteristics. Besides the microscopically measurable triple‐phase‐boundary (tpb) where Pt, YSZ and air are in contact, a considerable contribution of “nanoscopic” tpbs to the electrode conductivity resulting from oxygen permeable grain boundaries is identified. It is demonstrated that “dense” Pt thin films are excellent electrodes provided their grain size and thickness are in the nanometer range. The results disprove the prevailing idea that the performance of Pt thin film electrodes results from microscopic and geometrically measurable tpbs only.  相似文献   

10.
Agglomerated Pt thin films have been proposed as electrodes for electrochemical devices like micro‐solid oxide fuel cells (μ‐SOFCs) operating at low temperatures. However, comprehensive studies elucidating the interplay between agglomeration state and electrochemical properties are lacking. In this contribution the electrochemical performance of agglomerated and “dense” Pt thin film electrodes on yttria‐stabilized‐zirconia (YSZ) is correlated with their microstructural characteristics. Besides the microscopically measurable triple‐phase‐boundary (tpb) where Pt, YSZ and air are in contact, a considerable contribution of “nanoscopic” tpbs to the electrode conductivity resulting from oxygen permeable grain boundaries is identified. It is demonstrated that “dense” Pt thin films are excellent electrodes provided their grain size and thickness are in the nanometer range. The results disprove the prevailing idea that the performance of Pt thin film electrodes results from microscopic and geometrically measurable tpbs only.  相似文献   

11.
Very high lateral ionic conductivities in epitaxial cubic yttria‐stabilized zirconia (YSZ) synthesized on single‐crystal SrTiO3 and MgO substrates by reactive direct current magnetron sputtering are reported. Superionic conductivities (i.e., ionic conductivities of the order ~1 Ω?1cm?1) are observed at 500 °C for 58‐nm‐thick films on MgO. The results indicate a superposition of two parallel contributions – one due to bulk conductivity and one attributable to conduction along the film–substrate interface. Interfacial effects dominate the conductivity at low temperatures (<350 °C), showing more than three orders of magnitude enhancement compared to bulk YSZ. At higher temperatures, a more bulk‐like conductivity is observed. The films have a negligible grain‐boundary network, thus ruling out grain boundaries as a pathway for ionic conduction. The observed enhancement in lateral ionic conductivity is caused by a combination of misfit dislocation density and elastic strain in the interface. These very high ionic conductivities in the temperature range 150–500 °C are of great fundamental importance but may also be technologically relevant for low‐temperature applications.  相似文献   

12.
Membranes with outstanding performance that are applicable in harsh environments are needed to broaden the current range of organic dehydration applications using pervaporation. Here, well‐intergrown UiO‐66 metal‐organic framework membranes fabricated on prestructured yttria‐stabilized zirconia hollow fibers are reported via controlled solvothermal synthesis. On the basis of the adsorption–diffusion mechanism, the membranes provide a very high flux of up to ca. 6.0 kg m?2 h?1 and excellent separation factor (>45 000) for separating water from i ‐butanol (next‐generation biofuel), furfural (promising biochemical), and tetrahydrofuran (typical organic). This performance, in terms of separation factor, is one to two orders of magnitude higher than that of commercially available polymeric and silica membranes with equivalent flux. It is comparable to the performance of commercial zeolite NaA membranes. Additionally, the membrane remains robust during a pervaporation stability test (≈300 h), including exposure to harsh environments (e.g., boiling benzene, boiling water, and sulfuric acid) where some commercial membranes (e.g., zeolite NaA membranes) cannot survive.  相似文献   

13.
Solid acids as a substitution for hazardous liquid acids (e.g., HF and H2SO4) can promote many important reactions in the industry, such as carbon cracking, to proceed in a more sustainable way. Starting from a zirconium‐based metal‐organic framework (UiO‐66 nanocrystals), herein a transformative method is reported to prepare micro/mesoporous yttria‐stabilized zirconia (YSZ) encapsulated inside a mesoporous silica shell. It is then further demonstrated that the resultant reactor‐like catalysts can be used for a wide range of catalytic reactions. The acidity of the YSZ phase is found with rich accessible Lewis acid and Brønsted acid sites and they display superior performances for esterification (acetic acid and ethanol) and Friedel‐Crafts alkylation (benzylation of toluene). After being loaded with different noble metals, furthermore, hydrogenation of CO2 and a one‐pot cascade reaction (nitrobenzene and benzaldehyde to N‐benzylaniline) are used as model reactions to prove the versatility and stability of catalysts. Based on the findings of this work, it is believed that this class of reactor‐like catalysts can meet future challenges in the development of new catalyst technology for greener heterogeneous catalysis.  相似文献   

14.
Micro‐solid oxide fuel cells (μ‐SOFCs) are fabricated on nanoporous anodic aluminum oxide (AAO) templates with a cell structure composed of a 600‐nm‐thick AAO free‐standing membrane embedded on a Si substrate, sputter‐deposited Pt electrodes (cathode and anode) and an yttria‐stabilized zirconia (YSZ) electrolyte deposited by pulsed laser deposition (PLD). Initially, the open circuit voltages (OCVs) of the AAO‐supported μ‐SOFCs are in the range of 0.05 V to 0.78 V, which is much lower than the ideal value, depending on the average pore size of the AAO template and the thickness of the YSZ electrolyte. Transmission electron microscopy (TEM) analysis reveals the formation of pinholes in the electrolyte layer that originate from the porous nature of the underlying AAO membrane. In order to clog these pinholes, a 20‐nm thick Al2O3 layer is deposited by atomic layer deposition (ALD) on top of the 300‐nm thick YSZ layer and another 600‐nm thick YSZ layer is deposited after removing the top intermittent Al2O3 layer. Fuel cell devices fabricated in this way manifest OCVs of 1.02 V, and a maximum power density of 350 mW cm?2 at 500 °C.  相似文献   

15.
The electroactivity of surfactant‐templated mesoporous yttria stabilized zirconia, containing nanoclusters of platinum or nickel oxide, is explored by alternating current (AC) complex impedance spectroscopy. The observed oxygen ion and mixed oxygen ion–electron charge‐transport behavior for these materials, compared to the sintered‐densified non‐porous crystalline versions, is ascribed to the unique integration of mesoporosity and nanocrystallinity within the binary and ternary solid solution microstructure. These attributes inspire interest in this new class of materials as candidates for the development of improved performance solid oxide fuel cell electrodes.  相似文献   

16.
Fiber bundles are present in many tissues throughout the body. In most cases, collagen subunits spontaneously self‐assemble into a fibrilar structure that provides ductility to bone and constitutes the basis of muscle contraction. Translating these natural architectural features into a biomimetic scaffold still remains a great challenge. Here, a simple strategy is proposed to engineer biomimetic fiber bundles that replicate the self‐assembly and hierarchy of natural collagen fibers. The electrostatic interaction of methacrylated gellan gum with a countercharged chitosan polymer leads to the complexation of the polyelectrolytes. When directed through a polydimethylsiloxane channel, the polyelectrolytes form a hierarchical fibrous hydrogel demonstrating nanoscale periodic light/dark bands similar to D‐periodic bands in native collagen and align parallel fibrils at microscale. Importantly, collagen‐mimicking hydrogel fibers exhibit robust mechanical properties (MPa scale) at a single fiber bundle level and enable encapsulation of cells inside the fibers under cell‐friendly mild conditions. Presence of carboxyl‐ (in gellan gum) or amino‐ (in chitosan) functionalities further enables controlled peptide functionalization such as Arginylglycylaspartic acid (RGD) for biochemical mimicry (cell adhesion sites) of native collagen. This biomimetic‐aligned fibrous hydrogel system can potentially be used as a scaffold for tissue engineering as well as a drug/gene delivery vehicle.  相似文献   

17.
A simple one‐pot approach based on the “benzyl alcohol route” is used for the preparation of benzoate‐ and biphenolate‐capped zirconia and, benzoate‐capped Eu‐doped zirconia nanoparticles. Powder X‐ray diffraction studies and high‐ resolution transmission electron microscopy (HR‐TEM) showed that the nanoparticles present high crystallinity and uniform particle sizes ranging from 3 to 4 nm. FT‐IR and solid state NMR (SS‐NMR) studies revealed that the nanoparticles are coated with a large amount of organic species when the reaction temperature is above 300 °C. It was found that the alcohol used as solvent is oxidized at the surface of the nanoparticles to the respective carboxylic acid which acts as a stabilizer, controlling the nanoparticles growth. The optical properties of these hybrid nanoparticles were studied by room and low (12K) temperature photoluminescence spectroscopy, time‐resolved spectroscopy and absolute emission quantum yield. The as‐synthesized benzoate‐ and biphenolate‐capped nanoparticles exhibit interesting emission properties in the UV and blue spectral regions together with values of emission quantum yields much higher than those reported for zirconia nanoparticles of similar size. The photoluminescent properties were attributed to a cooperative effect of the capping ligands and the defects associated to the ZrO2 nanoparticles. Due to the overlapping of the various emission components involved (i.e., the emission of europium(III) intra‐4f6 transitions, defects in the zirconia and capping ligands) a tunable emission color ranging from purplish‐pink to greenish‐blue could be obtained for the europium‐doped zirconia nanoparticles by simply selecting different excitation wavelengths.  相似文献   

18.
Texturing of interfaces in thin film silicon solar cells is essential to enhance the produced photocurrent and thus the efficiencies. A UV nano‐imprint‐lithography (UV‐NIL) replication process was developed to prepare substrates with textures that are suitable for the growth of n‐i‐p thin film silicon solar cells. Morphological and optical analyses were performed to assess the quality of the replicas. A comparison of single junction amorphous solar cells on the original structures and on their replicas on glass revealed good light trapping and excellent electrical properties on the replicated structures. A tandem amorphous silicon/amorphous silicon (a‐Si/a‐Si) cell deposited on a replica on plastic exhibits a stabilized efficiency of 8.1% and a high yield of 90% of good cells in laboratory conditions. It demonstrates the possibility to obtain appropriate structure on low cost plastic substrate. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Transparent samples of cubic (8 mol % yttria) and tetragonal (3 mol % yttria) zirconia were prepared from nanometric powders by the pulsed electric current sintering process. The crystallite size of the resulting dense samples was about 50 nm in both cases. The consolidation pressure had a positive effect on the occurrence of transparency for both modifications. Transmittance in the near infrared for 1 mm thick samples is above the 60 % for the cubic (8 %YSZ) and above 50 % for the tetragonal (3 % YSZ) zirconia, representing between 70 and 80 % of the theoretical values of the two modifications. Samples had a yellowish‐brown coloration which was attributed to the presence of color centers. Annealing in oxygen improved transmittance initially, but prolonged annealing resulted in translucent samples. The role of porosity in transmittance is analyzed.  相似文献   

20.
Microstructures of yttria‐stabilized zirconia (YSZ) thin films deposited by spray pyrolysis at 370 °C on sapphire are investigated. The as‐deposited films are predominantly amorphous and crystallize upon heating at temperatures above 370 °C, developing grains in the range of 5 nm to several 100 nm. During post‐deposition heat treatment up to 800 °C, ~ 50 vol% porosity develops in the center of the films with gradients towards almost dense interfaces to the air and substrate. The reason for this porosity is the decomposition of residues from the precursor and the free volume liberated due to crystallization. Dense YSZ thin films consisting of one monolayer of grains are obtained with annealing temperatures exceeding 1200 °C. In gadolinium‐doped‐ceria (CGO) thin films similar microstructures and porosity are found after low‐temperature heat treatments indicating that the precursor residues due to the deposition method are the main cause of the porosity. Grain growth stagnation in annealed thin films is observed in both the YSZ and in CGO thin films. Stagnating grain growth in the thin films is rather caused by reduced grain boundary mobility, here predominately due to a “secondary phase”, i.e., pores, than to other effects. The stagnation ceases at higher annealing temperatures after densification has taken place.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号