首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The double integrating sphere setup (DIS) measures diffuse reflectance, diffuse transmittance and collimated transmittance, from which the optical properties of tissue (the absorption coefficient μ a, the scattering coefficient μs and the anisotropy of scattering g) are estimated. The effect of light losses in the DIS and optical thickness on optical properties estimation by the inverse adding doubling algorithm (IAD) and uniqueness of measurement have been investigated using a Monte Carlo method. Results were obtained for optical properties in turbid tissues (0.80⩽albedo⩽0.99, 0.80⩽anisotropy⩽ 0.99, 1.5⩽optical thickness⩽7.5) sandwiched between glass slides. At optical thickness=6.0 the loss of light through the glass slides is ranging from 13%±0.5% (at albedo=0.80) to 15%±0.5% (at albedo=0.98) of the incident power. The loss of light at the exit port in the transmittance sphere is increasing up to 50% of the incident power at highly forward scattering. These losses result in a dependency on optical thickness of the optical properties estimation by the IAD algorithm. Furthermore, because of these losses, the DIS setup measurement is found to be fundamentally nonunique, when simultaneously measuring the diffuse reflectance, diffuse transmittance and collimated transmittance  相似文献   

2.
Most models of light propagation through tissue assume the scattering properties of the various tissue layers are the same. The authors present evidence that the scattering coefficient of normal cervical epithelium is significantly lower than values previously reported for bulk epithelial tissue. They estimated the scattering coefficient of normal and precancerous cervical epithelium using measurements of the reflectance as a function of depth from confocal images. Reflectance measurements were taken from ex vivo cervical biopsies and fit to an exponential function based upon Beer's law attenuation. The mean scattering coefficients derived were 22 cm/sup -1/ for normal tissue and 69 cm/sup -1/ for precancerous tissue. These values are significantly lower than previously reported for bulk epithelial tissues and suggest that scattering of bulk tissue is dominated by the stroma. They also suggest that computational models to describe light propagation in epithelial tissue must incorporate different scattering coefficients for the epithelium and stroma. Further, the lower scattering of the epithelium suggests greater probing depths for fiber optic probes used by optical diagnostic devices which measure reflectance and fluorescence in epithelial tissue. The difference in scattering between normal and precancerous tissue is attributed to increased nuclear size, optical density, and chromatin texture. The scattering coefficients measured here are consistent with predictions of numerical solutions to Maxwell's equations for epithelial cell scattering.  相似文献   

3.
Sized-fiber spectroscopy describes a device and method for measuring absorption and reduced scattering properties of tissue using optical fibers with different diameters. The device used in this paper consists of two fibers with diameters of 200 and 600 μm. Each fiber emits and collects its own backscattered light. Backscattered light measurements for solutions with absorption coefficients of 0.1-2.0 cm -1 and reduced scattering coefficients of 5-50 cm-1 demonstrate that the device is most sensitive for the highest scattering materials. Monte Carlo simulations suggest the device is insensitive to the fiber illumination characteristics and that the light returning to the fiber is nearly uniform over all directions. Finally, experiments and Monte Carlo simulations of the sized-fiber device indicate that 50% of the signal arises from roughly 1.2 and 1.9 reduced mean-free paths for the 200- and 600-μm fibers, respectively  相似文献   

4.
A simple but effective method of spectral processing was developed to minimize or remove the effects of the presence of superficial blood on tissue optical spectra and, hence, enhance the performance of optical-spectroscopic-based in vivo tissue diagnosis and surgical guidance. This spectral-processing algorithm was developed using the principles of absorption-induced light attenuation wherein the ratio of fluorescence intensity (F) and the hth power of diffuse reflectance intensity (Rd) at a given emission wavelength λm is immune to spectral distortions induced by the presence of blood on the tissue surface. Here, the exponent h is determined by the absorption coefficients of whole blood at the excitation and emission wavelengths. The theoretical basis of this spectral processing was verified using simulations and was experimentally validated. Furthermore, the optical spectra of brain tissues collected in vivo was processed using this algorithm to evaluate its impact on brain tissue differentiation using combined fluorescence and diffuse reflectance spectroscopy. Based on the simulation, as well as experimental results, it was observed that using F/Rdh h can effectively reduce or remove spectral distortions induced by superficial blood contamination on tissue optical spectra. Thus, optical spectroscopy can also be used intraoperatively for applications such as surgical guidance of tumor resection  相似文献   

5.
In order to understand the role of water desorption and the mass transport process in the optical clearing effect on gastric tissues with the application of hyperosmotic agents, the porcine stomach tissues (pyloric mucosa) applied topically with glycerol and dimethyl sulfoxide (DMSO) are investigated with optical coherence tomography (OCT) and the near infrared reflectance spectroscopy. Three solutions of 80% and 50% glycerol, and 50% DMSO are studied, each of which shows significant improvement in light transmittance and, thus, reduction of the light scattering of tissue. It is found that, among the solutions investigated, 80% glycerol achieves the best clearing effect on improvement of both the light penetration and imaging contrast. More detailed microstructures of the mucosal layer can be observed for glycerol treatment, while these structures are not resolvable by the conventional OCT. Light transmittance is increased by approximately 23% and diffuse reflectance decreased by approximately 24% at 30 min after the topical application of 80% glycerol. 50% DMSO is more effective than 50% glycerol only at the beginning stage; thereafter the rate of optical clearing is slowed down with time. Although DMSO can enhance the light transmittance and thus reduce the scattering, it has a negligible effect on the imaging contrast improvement. The mass transport process of agent to tissue accounts for the different clearing effects for glycerol and DMSO, respectively. It is concluded that the optical clearing by the hyperosmotic agent is strongly correlated with the water desorption kinetics induced by agent and the agent mass transport process within tissue. In other words, the tissue dehydration induced by agent and the refractive index matching between the agent and the main scattering components within tissue facilitated by the agent mass transport are responsible for optical clearing effects.  相似文献   

6.
Silicon monoxide films were deposited on silver films on glass substrates and studied by infrared ellipsometry to determine the optical properties in the infrared wavelength range from 1.3 to 40 micrometers. The thicknesses of silicon monoxide and aluminum films were designed to 1 micrometer and 200 nanometers, respectively. The ellipsometric measurements were carried out by using a spectro-ellipsometer attached with an FT-IR. The imaginary part of the refractive index shows a high absorption region which is centered at 10 micrometers, whereas in other wavelength regions it shows rather low absorption. The resultant optical properties of silicon monoxide film are compared with published data. As an application, the spectral reflectance of spectral selective panel heating surface is calculated.  相似文献   

7.
The intensity of the intrinsic autofluorescence of the reduced form of nicotineamide adenine dinucleotid (NADH) of biological tissue depends on the local, cellular concentration of this coenzyme. It plays a dominant role in the Krebs cycle and, therefore, serves as an indicator for the vitality of the observed cells. Due to the individually and locally varying boundary conditions and optical tissue properties, which are scattering coefficients, absorption coefficients and an anisotropy factor g, the fluorescence signal needs to be rescaled. Rescaling methods use for instance the Kubelka-Munk theory or the photon migration theory. Our rescaling method is partly based on measurements and partly theoretically derived. By combining four methods, i.e., laser-induced fluorescence (LIF) of the time-resolved signal, biochemical concentration measurements. Monte Carlo simulations with typical optical parameters and microscopic investigations, we demonstrate that simultaneous detection of the fluorescence and backscattering signal can easily and accurately provide rescaled, quantitative values for the NADH concentrations  相似文献   

8.
Gold nanorods have the potential to be employed as extremely bright molecular marker labels for fluorescence, absorption, or scattering imaging of living tissue. However, samples containing a large number of gold nanorods usually exhibit relatively wide spectral lines. This linewidth limits the use of the nanorods as effective molecular labels, since it would be rather difficult to image several types of nanorod markers simultaneously. In addition, the observed linewidth does not agree well with theoretical calculations, which predict significantly narrower absorption and scattering lines. The discrepancy could be explained by apparent broadening because of the contribution of nanorods with various sizes and aspect ratios. We measured native scattering spectra of single gold nanorods with the confocal light absorption and scattering spectroscopy system, and found that single gold nanorods have a narrow spectrum as predicted by the theory, which suggests that nanorod-based molecular markers with controlled narrow aspect ratios, and to a lesser degree size distributions, should provide spectral lines sufficiently narrow for effective biomedical imaging.  相似文献   

9.
A novel and simple concept for on-off switching laser radiation delivery into a precise tissue area using tissue-activated optical fiber probes is demonstrated. The authors present the operating principle and general optical features of the fiber-optic-based delivery technique. The basic idea includes the use of a single delivery fiber with a specially shaped angled tip. Because of the frustrated-total-internal reflectance caused by the refractive-index change of the surrounding medium, the angled fiber tip acts as a smart tissue-activated probe. It provides a safe way for laser delivery that includes only two states of tissue illumination: 1) off-state (no tissue illumination), when the fiber tip is out of the tissue area and the laser emission is backreflected due to total-internal-reflection and 2) on-state (maximum tissue illumination), when the fiber tip is on the absorbing tissue area and becomes "transparent" because of the frustrated-total-internal reflectance. Here, optical properties of tissue-activated fiber probes used for precise laser delivery are investigated both experimentally and theoretically by analyzing the backreflectance signal power. Optical fibers working in the visible and mid-infrared spectral regions with various geometrical parameters are used and a spatial resolution of 2 /spl mu/m is achieved when the fiber tip is moved toward the absorption tissue surface.  相似文献   

10.
Thermal energy generated by radio-frequency current or other means may be employed in treating liver tumors by means of thermal coagulation when conventional resection is impossible. Currently, these thermal energy-based therapeutic procedures suffer from the lack of an adequate feedback control system, making it difficult to determine the optimal therapeutic endpoint. In this study, the potential of optical spectroscopy to provide such an objective endpoint for these procedures is presented. Freshly harvested canine liver samples were exposed to 50/spl deg/C, 60/spl deg/C, and 70/spl deg/C water baths for times ranging from 0 to 60 min. Transmission and reflectance were measured from each sample using an integrating sphere and the optical properties of each sample were accordingly derived. Excitation-emission matrices were recorded from the samples using a spectrofluorometer to identify the intrinsic fluorescence characteristics of native and thermally coagulated liver tissues. In addition, fluorescence and diffuse reflectance spectra were separately obtained from the samples prepared using a portable spectroscopic system. Results of this study show that fluorescence and optical properties of liver tissues exhibit clear and consistent changes through the thermal coagulation process. Specifically, the primary peak in the fluorescence spectra from liver tissues shifts from 480 nm in the native state to 510 nm in the fully coagulated state. In addition, a three- to fourfold increase in the absolute intensity of the diffuse reflectance spectra is observed upon complete coagulation of liver tissues. These dynamic spectral features indicate that fluorescence and diffuse reflectance spectroscopy may provide a direct measure of the biochemical and structural changes associated with tissue thermal damage in the liver.  相似文献   

11.
Low-temperature crystallized ZnO thin film was achieved by sol–gel process using zinc acetate dihydrate and 2-methoxyethanol as starting precursor and solvent, respectively. Ag nanoparticles were prepared with uniform size at 4.4 nm by spontaneous reduction method of Ag 2-ethylhexanoate in dimethyl sulfoxide (DMSO). The optical and electrical properties of ZnO thin films containing various contents of Ag-nanoparticles were monitored. Light scattering and charge emission and scattering behaviors of Ag nanoparticles in ZnO film were found. The incorporation of Ag nanoparticles into Al-doped ZnO film was also investigated. The optical transmittance was not degraded but the increase of electrical sheet resistance was found. The effect of Al-dopant on the transmittance and electrical sheet resistance of ZnO film was found too great to distinguish the positive effect of the incorporation of Ag nanoparticles into Al-doped ZnO thin films.  相似文献   

12.
Fluorescence measurements from tissue are increasingly being used as a medical diagnostic procedure to assess tissue malignancy or tissue function. Unfortunately, the reemitted fluorescent intensity measured from a tissue surface is not necessarily proportional to the fluorophore concentration because the light is altered by the tissue's intrinsic absorption and scattering properties. By measuring fluorescence from tissue volumes which are smaller than the average scattering length, the effects of the tissue's intrinsic absorption are diminished. In this study, experiments with tissue simulating phantoms are used, as well as Monte Carlo simulations of the experiment, to demonstrate the utility of point fluorescence detection for diagnostic measurements. Potential applications of this technique range from photosensitizer quantitation in vivo, pharmacokinetic measurements of fluorophore in different tissues, to any application where fluorophore quantification is required from a highly scattering medium  相似文献   

13.
The optical properties of liquid xenon (LXe) in the vacuum ultra violet (VUV), determining the performance of a scintillation calorimeter, are discussed in detail. The available data, measured in a wider spectral region from visible to UV light, and in a large range of Xe densities, from gas to liquid, are examined. It is shown that this information can be used for deriving the LXe optical properties in the VUV. A comparison is made with the few direct measurements in LXe for VUV light resulting from the LXe excitation by ionizing particles. A useful relation is obtained which connects the Rayleigh scattering length to the refractive index in LXe.  相似文献   

14.
In this study, we wanted to see if fluorescence anisotropy could be used to detect changes in metabolism in cells with significant light scattering and absorption properties. Fluorescence anisotropy measurements of nicotinamide adenine dinucleotide (NADH) were performed with human melanocytes and melanoma cell lines. To demonstrate the feasibility of using fluorescence anisotropy for detecting metabolic changes, the electron transport chain was blocked using rotenone, inducing an accumulation of intracellular NADH. Total fluorescence increased in all cells as a result of rotenone treatment. Fluorescence anisotropy decreased in the rotenone-treated cells relative to the controls, suggesting an increased ratio of free to protein-bound NADH in the treated cells. In general, the fluorescence anisotropy of the melanocytes was significantly higher than that of the melanoma cell lines. Reflectance spectroscopy showed that the differences in fluorescence anisotropy between the cell types were not due to differences in scattering and absorption properties. Intrinsic cellular NADH fluorescence was experimentally extracted by ratioing polarized fluorescence to polarized reflectance. NADH binding, measured as the ratio of fluorescence intensity at 430 and 465 nm, showed more protein-bound NADH in the melanocytes than in the melanoma cells, consistent with the fluorescence anisotropy measurements.  相似文献   

15.
运用挤出压印成型制备了表面添加微结构的PS漫反射板和PMMA扩散板,测试了漫反射板的反射率和漫反射率及扩散板的透光率和雾度。基于前期制备的微结构配光材料,将其应用在格栅灯上,测试了格栅灯的光学性能。微结构配光材料提高了格栅灯的光效,同时保障了光线均匀性。  相似文献   

16.
The development of specific fluorescently labeled cell surface markers have opened the possibility of specific and quantitative noninvasive diagnosis of tissue changes. We are developing a fluorescence scanning imaging system that can perform a “noninvasive optical biopsy” of the Sjogren syndrome (SS) which may replace the currently used histological biopsy. The diagnosis of SS is based on the quantification of the number of topical preadministered fluorescent antibodies which specifically bind to the lymphocytes infiltrating the minor salivary glands. We intend to scan the lower lip, and for each position of the scan, generate a two-dimensional (2-D) image of fluorescence using a charge-coupled device (CCD) camera. We have shown previously that our diffuse fluorescent photon migration theory predicts adequately the positions and strengths of one and two fluorescent targets embedded at different depths in tissue-like phantoms. An inverse reconstruction algorithm based on our theoretical findings has been written in C++ and uses 2-D images to predict the strength and location of embedded fluorophores. However, due to large numbers of variables, which include the optical properties of the tissue at the excitation and emission wavelengths, and the positions and strengths of an unknown number of fluorophore targets, the validity of the final result depends on assumptions (such as the number of targets) and the input values for the optical parameters. Our results show that the number of fluorophore targets reconstructed for each scan is limited to two, and at least the scattering coefficient at the excitation wavelength is needed a priori to obtain good results. The latter can be obtained by measurements of spatially resolved diffuse reflectance at the excitation wavelength that provides the product of the absorption and scattering coefficients  相似文献   

17.
We investigate a microscope design that offers high signal sensitivity and hyperspectral imaging capabilities and allows for implementation of various optical imaging approaches while its operational complexity is minimized. This system uses long working distance microscope objectives that enable for off-axis illumination of the tissue, thereby allowing for excitation at any optical wavelength and nearly eliminating spectral noise from the optical elements. Preliminary studies using human and animal tissues demonstrate the feasibility of this approach for real-time imaging of intact tissue microstructures using autofluorescence and light scattering imaging methods.  相似文献   

18.
变压器油中溶解气体的红外吸收特性理论分析   总被引:4,自引:1,他引:3  
气体的红外吸收特性是红外光学方法分析气体的依据。基于HITRAN2004数据库用逐线积分法对变压器油中溶解气体CH4、C2H6、C2H4、C2H2、CO、CO2及H2O的红外吸收特性进行分析,给出各气体在波段500~4 000 cm-1内的吸收系数、主要吸收谱带位置、最强吸收谱线的中心波数及其峰值吸收系数;以各气体特征频谱处的吸收谱线为研究对象,分析峰值吸收系数随压强、温度的变化规律。计算和分析结果是用傅里叶变换红外光谱、光声光谱等红外光学方法对变压器油中溶解气体进行定性定量分析的重要依据。  相似文献   

19.
为获取紫外 真空紫外光学元件的光谱反射率,构建了一套反射率测试系统。该反射率测试系统主要由Seya Namioka紫外 真空紫外单色仪、样品精密转台为主体的光机结构和电子学系统组成。首先,介绍了系统测量原理,采用双光路补偿法消除了光源随时间的飘移,通过改变系统光路进行两次测量来获取反射光与入射光数据,进而得到光谱反射率。接着对电子学硬件系统进行描述,给出了驱动控制单元与信号处理采集单元的硬件设计与组成。因紫外 真空紫外光谱信号微弱,采用了锁相放大的方法提高了测量精度。该反射率测试系统测试结果表明波长重复性0.05 nm,反射率测量重复精度为1.8%,系统功能完备稳定性好,能够实现对光学元件的高精度测量。  相似文献   

20.
针对靶场海量测量图像的存储问题,提出了光测图像序列的复合压缩方法。该算法解决了小波变换产生浮点数,导致信号不能精确重构的问题,实现了从整数变换系数中完全重建图像;同时借鉴ROI思想,解决了图像压缩需求与测量精度的矛盾,在同一压缩框架下,实现了目标区域的无损压缩和背景区域的高倍压缩;设计了靶场测量图像序列压缩码流结构,保证了解码时目标区域信息的完整性、目标区域和背景区域压缩码流的可分割性和整体码流的连续性。经仿真验证,该算法科学可行,在同一压缩比时本文方法的SSIM值优于JPEG2000压缩标准,压缩后目标判读误差在3”内,在满足数据处理精度的基础上实现了光测图像的大比例压缩。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号