首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Protein phosphorylation is one of the most important known posttranslational modifications. Tandem mass spectrometry has become an important tool for mapping out the phosphorylation sites. However, when a peptide generated from the enzymatic or chemical digestion of a phosphoprotein is highly phosphorylated or contains many potential phosphorylation residues, phosphorylation site assignment becomes difficult. Separation and enrichment of phosphopeptides from a digest mixture is desirable and often a critical step for MS/MS-based site determination. In this work, we present a novel open tubular immobilized metal ion affinity chromatography (OT-IMAC) method, which is found to be more effective and reproducible for phosphopeptide enrichment, compared to a commonly used commercial product, Ziptip from Millipore. A strategy based on a combination of OT-IMAC, sequential dual-enzyme digestion, and matrix-assisted laser desorption/ionization (MALDI) quadrupole time-of-flight tandem mass spectrometry for phosphoprotein characterization is presented. It is shown that MALDI MS/MS with collision-induced dissociation can be very effective in generating fragment ion spectra containing rich structural information, which enables the identification of phosphorylation sites even from highly phosphorylated peptides. The applicability of this method for real world applications is demonstrated in the characterization and identification of phosphorylation sites of a Na(+)/H(+) exchanger fusion protein, His182, which was phosphorylated in vitro using the kinase Erk2.  相似文献   

2.
Ion mobility spectrometry (IMS), and particularly differential or field asymmetric waveform IMS (FAIMS), was recently shown capable of separating peptides with variant localization of post-translational modifications. However, that work was limited to a model peptide with Ser phosphorylation on fairly distant alternative sites. Here, we demonstrate that FAIMS (coupled to electrospray/mass spectrometry (ESI/MS)) can broadly baseline-resolve variant phosphopeptides from a biologically modified human protein, including those involving phosphorylation of different residues and adjacent sites that challenge existing tandem mass spectrometry (MS/MS) methods most. Singly and doubly phosphorylated variants can be resolved equally well and identified without dissociation, based on accurate separation properties. The spectra change little over a range of infusion solvent pH; hence, the present approach should be viable in conjunction with chromatographic separations using mobile phase gradients.  相似文献   

3.
Immobilized metal ion affinity chromatography (IMAC) is a useful method to selectively isolate and enrich phosphopeptides from a peptide mixture. Mass spectrometry is a very suitable method for exact molecular weight determination of IMAC-isolated phosphopeptides, due to its inherent high sensitivity. Even exact molecular weight determination, however, is not sufficient for identification of the phosphorylation site if more than one potential phosphorylation site is present on a peptide. The previous method of choice for sequencing the affinity-bound peptides was electrospray tandem mass spectrometry (ESI-MS/MS). This method required elution and salt removal prior to MS analysis of the peptides, which can lead to sample loss. Using a matrix-assisted laser desorption/ionization (MALDI) source coupled to an orthogonal injection quadrupole time-of-flight (QqTOF) mass spectrometer with true MS/MS capabilities, direct sequencing of IMAC-enriched peptides has been performed on IMAC beads applied directly to the MALDI target. The utility of this new method has been demonstrated on a protein with unknown phosphorylation sites, where direct MALDI-MS/MS of the tryptic peptides bound to the IMAC beads resulted in the identification of two novel phosphopeptides. Using this technique, the phosphorylation site determination is unambiguous, even with a peptide containing four potentially phosphorylated residues. Direct analysis of phosphorylated peptides on IMAC beads does not adversely affect the high-mass accuracy of an orthogonal injection QqTOF mass spectrometer, making it a suitable technique for phosphoproteomics.  相似文献   

4.
A protocol combining immobilized metal ion affinity chromatography and beta-elimination with concurrent Michael addition has been developed for enhanced analysis of protein phosphorylation. Immobilized metal ion affinity chromatography was initially used to enrich for phosphorylated peptides. Beta-elimination, with or without concurrent Michael addition, was then subsequently used to simultaneously elute and derivatize phosphopeptides bound to the chromatography resin. Derivatization of the phosphate facilitated the precise determination of phosphorylation sites by MALDI-PSD/LIFT tandem mass spectrometry, avoiding complications due to ion suppression and phosphate lability in mass spectrometric analysis of phosphopeptides. Complementary use of immobilized metal ion affinity chromatography and beta-elimination with concurrent Michael addition in this manner circumvented several inherent disadvantages of the individual methods. In particular, (i) the protocol discriminated O-linked glycosylated peptides from phosphopeptides prior to beta-elimination/Michael addition and (ii) the elution of peptides from the chromatography resin as derivatized phosphopeptides distinguished them from unphosphorylated species that were also retained. The chemical derivatization of phosphopeptides greatly increased the information obtained during peptide sequencing by mass spectrometry. The combined protocol enabled the detection and sequencing of phosphopeptides from protein digests at low femtomole concentrations of initial sample and was employed to identify novel phosphorylation sites on the cell adhesion protein p120 catenin and the glycoprotein fetuin.  相似文献   

5.
We describe a strategy, which we term hypothesis-driven multiple-stage mass spectrometry (HMS-MS), for the sensitive detection and identification of phosphopeptides derived from enzymatic digests of phosphoproteins. In this strategy, we postulate that any or all of the potential sites of phosphorylation in a given protein may be phosphorylated. Using this assumption, we calculate the m/z values of all the corresponding singly charged phosphopeptide ions that could, in theory, be produced by the enzyme employed for proteolysis. We test ions at these m/z values for the presence of phosphoserine or phosphothreonine residues using tandem mass spectrometry (MS(2)) in a vacuum MALDI ion trap mass spectrometer, where the neutral loss of the elements of H(3)PO(4) (98 Da) provides a sensitive assay for the presence of phosphopeptides. Subsequent MS(3) analysis of the (M + H - 98)(+) peaks allows us to confirm or reject the hypotheses that the putative phosphopeptides are present in the sample. HMS-MS was successfully applied to the detection and identification of phosphopeptides from substrates of the Saccharomyces cerevisiae cyclin-dependent kinase (Cdk) Cdc28, phosphorylated in vitro (Ipl1) and in vivo (Orc6), basing hypothesis formation on the minimal Cdk consensus phosphorylation motif Ser/Thr-Pro. The method was also used to find in vitro phosphopeptides from a domain of the Drosophila melanogaster protein PERIOD, hypothesizing possible phosphorylations of all Ser/Thr residues without assuming a consensus motif. Our results demonstrate that HMS-MS is a sensitive, highly specific tool for systematically surveying proteins for Ser/Thr phosphorylation, and represents a significant step toward our goal of comprehensive phosphorylation mapping.  相似文献   

6.
Loss of phosphoric acid is the most effective fragmentation reaction of pSer- and pThr-containing phosphopeptides of small size (up to 10-15 residues) in low-energy collision-induced dissociation. Therefore, tandem mass spectrometry with neutral loss scanning was evaluated for its utility to analyze protein phosphorylation using protein kinase A (PKA) catalytic subunit, which is phosphorylated at Thr197 and Ser338, as an example. Analysis of tryptic digests of phosphoproteins by tandem mass spectrometry with scanning for neutral loss of phosphoric acid resulted in spectra with poor signal-to-noise ratio, mainly because of the large size of the phosphopeptides formed (>2 kDa). This unfavorable size was caused by the distribution of tryptic cleavage sites in PKA and by interference of phosphorylation with tryptic cleavage. To generate a set of smaller peptide fragments, digestion was performed using the low-specificity protease elastase. Analysis of the total elastase digest with neutral loss scanning resulted in observation of a set of partially overlapping phosphopeptides with high abundance, providing a complete coverage of PKA phosphorylation sites. The peptide size generated by elastase (0.5-1.5 kDa) is ideally suited for this scan mode, which was found to provide the highest specificity for detection of singly charged phosphopeptides (neutral loss of 98). Identification of the PKA phosphorylation sites was performed by mass spectrometric sequencing of the elastase-derived phosphopeptides, which provided highly informative product ion spectra.  相似文献   

7.
We describe a rapid and efficient method for the identification of phosphopeptides, which we term mass spectrometric (MS) phosphopeptide fingerprinting. The method involves quantitative comparison of proteolytic peptides from native versus completely dephosphorylated proteins. Dephosphorylation of serine, threonine, and tyrosine residues is achieved by in-gel treatment of the separated proteins with hydrogen fluoride (HF). This chemical dephosphorylation results in enrichment of those unmodified peptides that correspond to previously phosphorylated peptides. Quantitative comparison of the signal-to-noise ratios of peaks in the treated versus untreated samples are used to identify phosphopeptides, which can be confirmed and further studied by tandem mass spectrometry (MS/MS). We have applied this method to identify eight known phosphorylation sites of Xenopus Aurora A kinase, as well as several novel sites in the Xenopus chromosome passenger complex (CPC).  相似文献   

8.
Metal affinity complexes were chemically grafted onto the surface of gold matrix-assisted laser desorption/ionization (MALDI) plates by coupling a derivative of nitrilotriacetate (NTA) to immobilized poly(acrylic acid) (PAA) and subsequently forming the Fe(III)-NTA complex. The immobilized complexes can adsorb phosphorylated peptides preferentially from protein digests; deposition of digests on these surface-modified plates, followed by rinsing with an acetic acid solution, addition of matrix, and subsequent analysis by MALDI MS, resulted in mass spectra dominated by peaks corresponding to phosphopeptides. In the case of analyzing a tryptic digest of beta-casein, conventional MALDI MS revealed only one monophosphopeptide, while use of the Fe(III)-NTA-PAA-modified plate resulted in strong signals due to two additional tetraphosphorylated species. The diminution or elimination of signals due to nonphosphorylated species also greatly simplified the identification of phosphopeptides during analysis of ovalbumin digests and myoglobin digests spiked with an equimolar mixture of angiotensin and phosphoangiotensin. The matrix 2',4',6'-trihydroxyacetophenone mixed with diammonium hydrogen citrate proved to be much better than alpha-cyano-4-hydroxycinnamic acid for the detection of phosphorylated peptides from digests of beta-casein and ovalbumin.  相似文献   

9.
We have developed novel scoring schemes for the identification of (phospho)peptides (PeptideScore) and for pinpointing phosphorylation sites (PhosphoSiteScore) using MS/MS data. These scoring schemes have been developed for the in-depth analysis of individual phosphoproteins, not for large-scale phosphoproteomic-type data. The scoring schemes are implemented into the new software tool Phosm, which provides a concise and comprehensive presentation of the results. For development and evaluation of these schemes, we have analyzed approximately 500 phosphopeptide MS/MS spectra, most of them nontryptic peptides. The novel scoring schemes turned out to be very powerful, even with CID MS/MS spectra of very low quality. Many phosphopeptides and phosphorylation sites that remained unassigned in our LC-MS/MS data sets with Mascot could be identified with Phosm. Especially the number of identified multiply phosphorylated peptides could be significantly increased. The applied scoring parameters are described, and the scoring for several selected examples of phosphopeptides is discussed in detail. Furthermore, a new and simple nomenclature for all types of phosphorylated fragment ions is introduced in this publication.  相似文献   

10.
We demonstrate a strategy employing collision-induced dissociation for phosphopeptide discovery, followed by targeted electron capture dissociation (ECD) for site localization. The high mass accuracy and low background noise of the ECD mass spectra allow facile sequencing of coeluting isobaric phosphopeptides, with up to two isobaric phosphopeptides sequenced from a single mass spectrum. In contrast to the previously described neutral loss dependent ECD method, targeted ECD allows analysis of both phosphotyrosine peptides and lower abundance phosphopeptides. The approach was applied to phosphorylation analysis of human Sprouty2, a regulator of receptor tyrosine kinase signaling. Fifteen sites of phosphorylation were identified, 11 of which are novel.  相似文献   

11.
Tandem mass spectrometry has long been an intrinsic tool to determine phosphorylation sites in proteins. However, loss of the phosphate moiety from both phosphoserine and phosphothreonine residues in low-energy collision-induced dissociation is a common phenomenon, which makes identification of P-Ser and P-Thr residues complicated. A method for direct sequencing of the Ser and Thr phosphorylation sites by ESI tandem mass spectrometry following beta-elimination/sulfite addition to convert -HPO4 to -SO3 has been studied. Five model phosphopeptides, including three synthetic P-Ser-, P-Thr-, or P-Ser- and P-Thr-containing peptides; a protein kinases C-phosphorylated peptide; and a phosphopeptide derived from beta-casein trypsin digests were modified and then sequenced using an ESI-quadrupole ion trap mass spectrometer. Following incubation of P-Ser- or P-Thr-containing peptides with Na2SO3/NaOH, 90% P-Ser and 80% P-Thr was converted to cysteic acid and beta-methylcysteic acid, respectively, as revealed by amino acid analysis. The conversion can be carried out at 1 microM concentration of the peptide. Both cysteic acid and beta-methylcysteic acid residues in the sequence were shown to be stable and easily identifiable under general conditions for tandem mass spectrometric sequencing applicable to common peptides.  相似文献   

12.
Pinpointing of phosphorylation sites by positive ion collision-induced dissociation (CID) in phosphopeptides containing consecutive Ser/Thr residues (Ser/Thr clusters) is frequently hampered by the lack of backbone cleavage between adjacent Ser/Thr or pSer/pThr sites. In this study, we demonstrate that in negative ion collision-induced dissociation phosphorylated and unmodified residues of Ser/Thr clusters exhibit a very selective behavior toward cleavage of their N-Calpha bonds. Ser/Thr clusters were defined as two and more consecutive serine or threonine residues in phosphopeptide sequences. Dissociation reactions at pSer are significantly more abundant than those of unmodified sites. Thr residues exhibit the same effect, but the cleavages occurring at pThr are generally less prominent than those at pSer. The correlation observed between the facility of the amine backbone bond dissociation of phosphopeptides and the presence of the phosphate group on the side chain residues of Ser and Thr is attributed to the different magnitudes of electron density on the Calpha atoms of the amino acid in phosphorylated and unmodified forms. The results of this study indicate that the intensity ratio of the fragments generated by N-Calpha bond cleavage within the phosphopeptide Ser/Thr clusters represents a reliable and general marker for pinpointing of phosphorylation sites. The presented data illustrate that negative ion electrospray CID is superior over the standard positive ion mode approach for the localization of protein phosphorylation inside Ser/Thr clusters.  相似文献   

13.
A novel stable-isotope labeling approach for identification of phosphopeptides that utilizes adenosine triphosphate, in which four oxygen-16 atoms attached to the terminal phosphate group are substituted with oxygen-18 [gamma((18)O4)-ATP], has been developed. The ability to use gamma((18)O4)-ATP to monitor phosphorylation modification within various proteins was conducted by performing in vitro kinase reactions in the presence of a 1:1 mixture of gamma((18)O4)-ATP and normal isotopic abundance ATP (ATP). After tryptic digestion, the peptides were analyzed using mass spectrometry (MS). Phosphorylated peptides are easily recognized within the MS spectrum owing to the presence of doublets separated by 6.01 Da; representing versions of the peptide modified by ATP and gamma((18)O4)-ATP. Standard peptides phosphorylated using gamma((18)O4)-ATP via in vitro kinase reactions showed no exchange loss of (18)O with (16)O. The identity of these doublets as phosphorylated peptides could be readily confirmed using tandem MS. The method described here provides the first direct stable-isotope labeling method to definitely detect phosphorylation sites within proteins.  相似文献   

14.
Selective detection of phosphopeptides from proteolytic digests is a challenging and highly relevant task in many proteomics applications. Often phosphopeptides are present in small amounts and need selective isolation or enrichment before identification. Here we report a novel automated method for the enrichment of phosphopeptides from complex mixtures. The method employs a two-dimensional column setup, with titanium oxide-based solid-phase material (Titansphere) as the first dimension and reversed-phase material as the second dimension. Phosphopeptides are separated from nonphosphorylated peptides by trapping them under acidic conditions on a TiO(2) precolumn. Nonphosphorylated peptides break through and are trapped on a reversed-phase precolumn after which they are analyzed by nanoflow LC-ESI-MS/MS. Subsequently, phosphopeptides are desorbed from the TiO(2) column under alkaline conditions, reconcentrated onto the reversed-phase precolumn, and analyzed by nanoflow LC-ESI-MS/MS. The selectivity and practicality of using TiO(2) precolumns for trapping phosphopeptides are demonstrated via the analysis of a model peptide RKISASEF, in a 1:1 mixture of a non- and a monophosphorylated form. A sample of 125 fmol of the phosphorylated peptide could easily be isolated from the nonphosphorylated peptide with a recovery above 90%. In addition, proteolytic digests of three different autophosphorylation forms of the 153-kDa homodimeric cGMP-dependent protein kinase are analyzed. From proteolytic digests of the fully autophosphorylated protein at least eight phosphorylation sites are identified, including two previously uncharacterized sites, namely, Ser-26 and Ser-44. Ser-26 is characterized as a minor phosphorylation site in purified PKG samples, while Ser-44 is identified as a novel in vitro autophosphorylation target. These results clearly show that TiO(2) has strong affinity for phosphorylated peptides, and thus, we conclude that this material has a high potential in the field of phosphoproteomics.  相似文献   

15.
Capillary liquid chromatography (muLC) interfaced to inductively coupled plasma mass spectrometry (ICPMS) is introduced as a new micromethod to determine the phosphorylation degree in phosphoproteins and phosphopeptides containing cysteine and/or methionine residues. The stoichiometric phosphorus to sulfur (31P to 32S) ratio is experimentally determined by muLC-ICPMS and converted into the degree of phosphorylation using protein/ peptide sequence information. The method is applied to the phosphoproteins beta-casein, beta-casein, and recombinant protein kinase A catalytic subunit and to synthetic phosphopeptides. The accurate data obtained by muLC-ICPMS allow quantitative assessment of the compound-specific discrimination of the electrospray ionization process between nonphosphorylated and phosphorylated proteins and peptides.  相似文献   

16.
Ji L  Wu JH  Luo Q  Li X  Zheng W  Zhai G  Wang F  Lü S  Feng YQ  Liu J  Xiong S 《Analytical chemistry》2012,84(5):2284-2291
We describe herein the development of a matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry (MALDI-TOF-MS) approach for screening of protein kinase inhibitors (PKIs). MS quantification of phosphopeptides, the kinase-catalyzed products of nonphosphorylated substrates, is a great challenge due to the ion suppression effect of highly abundant nonphosphorylated peptides in enzymatic reaction mixtures. To address this issue, a novel type of titania coated magnetic hollow mesoporous silica spheres (TiO(2)/MHMSS) material was fabricated for capturing phosphopeptides from the enzymatic reaction mixtures prior to MS analysis. Under optimized conditions, even in the presence of 1000-fold of a substrate peptide of tyrosine kinase epidermal growth factor receptor (EGFR), the phosphorylated substrates at the femtomole level can be detected with high accuracy and reproducibility. With a synthetic nonisotopic labeled phosphopeptide, of which the sequence is similar to that of the phosphorylated substrate, as the internal standard, the MS signal ratio of the phosphorylated substrate to the standard is linearly correlated with the molar ratio of the two phosphopeptides in peptide mixtures over the range of 0.1 to 4 with r(2) being 0.99. The IC(50) values of three EGFR inhibitors synthesized in our laboratory were then determined, and the results are consistent with those determined by an enzyme-linked immunosorbent assay (ELISA). The developed method is sensitive, cost/time-effective, and operationally simple and does not require isotope/radioative-labeling, providing an ideal alterative for screening of PKIs as therapeutic agents.  相似文献   

17.
Reversible phosphorylation regulates the majority of intracellular networking and pathways. The study of this widely explored post-translational modification is usually challenged by low stoichiometric levels of modification. Many approaches have been developed to overcome this problem and to achieve rigorous characterization of protein phosphorylation. We describe a method for enhanced detection of low-abundance protein phosphorylation that uses selective introduction of (18)O label into phosphorylation sites with H(2)(18)O and mass spectrometric detection. The method was applied to introduce (18)O label into bacterially expressed Aurora A kinase phosphorylation sites and resulted in the representation of phosphorylated peptides as doublets or triplets according to the number of phosphate groups. A total of 28 phosphopeptides were observed by this method.  相似文献   

18.
We have developed a multi-protease approach that allows sensitive and comprehensive mapping of protein phosphorylation sites. The combined application of the low-specificity proteases elastase, proteinase K, and thermolysin in addition to trypsin results in high sequence coverage, a prerequisite for comprehensive phosphorylation site mapping. Phosphopeptide enrichment is performed with the recently introduced phosphopeptide affinity material titansphere. We have optimized the selectivity of the phosphopeptide enrichment with titansphere, without compromising the high recovery rate of approximately 90%. Phosphopeptide-enriched fractions are analyzed with a highly sensitive nanoLC-MS/MS system using a 25-microm-i.d. reversed-phase column, operated at a flow rate of 25 nL/min. The new approach was applied to the murine circadian protein period 2 (mPER2). A total of 21 phosphorylation sites of mPER2 have been detected by the multi-protease approach, whereas only 6 phosphorylation sites were identified using solely trypsin. Titansphere proved to be well suited for the enrichment of a large variety of phosphopeptides, including peptides carrying two, three, or four phosphorylated residues, as well as phosphopeptides containing more basic than acidic amino acids.  相似文献   

19.
The use of a phosphoprotein isotope-coded affinity tag (PhIAT), which employs differential isotopic labeling and biotinylation, has been shown capable of enriching and identifying mixtures of low-abundance phosphopeptides. A denatured solution of beta-casein was labeled using the PhIAT method, and after proteolytic digestion, the labeled peptides were isolated using immobilized avidin. The recovered peptides were separated by capillary reversed-phase liquid chromatography and identified by tandem mass spectrometry. PhIAT-labeled peptides corresponding to known O-phosphorylated peptides from beta-casein were identified along with the phosphorylated peptides from alphas1-casein and alphas2-casein, known low-level (<5%) contaminants of commercially available beta-casein. All of the casein-phosphorylated residues identified by the present PhIAT approach correspond to previously documented sites of phosphorylation. The results illustrate the efficacy of the PhIAT-labeling strategy to not only enrich mixtures for phosphopeptides but also, more importantly, permit the detection and identification of low-level phosphopeptides. In addition, the differences in the phosphorylation state could be determined between phosphopeptides in comparative samples by stoichiometric conversion using the light and heavy isotopic versions of the PhIAT reagents. Overall, our results exemplify the application of the PhIAT approach and demonstrate its utility for proteome-wide phosphoprotein identification and quantitation.  相似文献   

20.
We have developed a simple, highly specific enrichment procedure for phosphopeptides, by increasing the specificity of an immobilized metal affinity column (IMAC) without using any chemical reaction. The method employs a biphasic IMAC-C18 tip, in which IMAC beads are packed on an Empore C18 disk in a 200-microL pipet tip. Phosphopeptides are separated from non-phosphopeptides on the IMAC in an optimized solvent without any chemical reaction, then desorbed from the IMAC using a phosphate buffer, reconcentrated, and desalted on the C18 disk. The increase in selectivity was achieved by (a) using a strong acid to discriminate phosphates from carboxyl groups of peptides and (b) using a high concentration of acetonitrile to remove hydrophobic non-phosphopeptides. The entire procedure was optimized by using known phosphoproteins such as Akt1 kinase and protein kinase A. Although it was difficult to detect phosphopeptides in MALDI-MS spectra of tryptic peptide mixtures before enrichment, after the IMAC procedure, we could successfully detect phosphopeptides with almost no non-phosphopeptides. Next, we constructed an array of IMAC-IMAC/C18 tips, such that number of arrayed tips on a 96-well plate could easily be changed depending on the loading amount of sample. Applying this approach to mouse forebrain resulted in the identification of 162 phosphopeptides (166 phosphorylation sites) from 135 proteins using nano-LC/MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号