首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
采用水热法合成了Mn-Zn复合氧化物,用等体积浸渍法制备了Mn-Zn复合氧化物负载Ni脱硫催化剂。采用XRD、FT-IR、N_2吸附-脱附、XPS等手段表征Mn-Zn复合氧化物和相应Ni催化剂,并以正庚烷-噻吩为模型化合物,考察了所制备的脱硫催化剂的催化活性。结果表明,Mn-Zn形成复合氧化物后,Mn以+4价离子存在,并且进入ZnO的晶格内部,替代了Zn的格位,改变了ZnO的晶胞参数和粒子尺寸,比表面积、孔体积、孔径明显增大;负载金属Ni的Mn-Zn复合氧化物催化剂的脱硫催化活性比纯ZnO负载Ni催化剂的脱硫催化活性提高14%,并且具有良好的重复使用性能。  相似文献   

2.
非负载型催化剂上柴油深度加氢脱硫工艺条件研究   总被引:1,自引:0,他引:1  
采用水热合成法制备了非负载型Ni-Mo-W催化剂并对其进行表征,研究催化裂化(FCC)柴油在该催化剂上的深度加氢脱硫过程,考察反应温度、反应压力、空速和氢油比等工艺条件对柴油深度加氢脱硫效果的影响,并与工业化NiMo/Al2O3催化剂的加氢活性进行对比。结果表明,在反应温度为340 ℃、反应压力为6.0 MPa、空速为1.5 h-1、氢油体积比为600的条件下,非负载型Ni-Mo-W催化剂可使胜华FCC柴油的脱硫率达到99.84%,脱氮率达到99.96%,与工业化NiMo/Al2O3催化剂相比,非负载型Ni-Mo-W催化剂具有更高的加氢活性。  相似文献   

3.
采用水热反应法合成了一系列NiMo不同比例的多孔复合金属氧化物,用XRD、BET、SEM表征手段对其结构、孔性质等进行了表征,并将NiMo复合金属氧化物制备成非负载型NiMo加氢催化剂,在连续流动高压微反装置上考察了其加氢脱硫、加氢脱氮和芳烃加氢饱和反应活性。结果表明,这几种复合金属氧化物是具有钼酸镍铵晶相的物质,并且随着镍含量的增加,合成的NiMo复合金属氧化物的比表面积和孔容呈现线性增加的趋势,而孔径则表现出双介孔的特征。催化评价结果表明,当NiMo比例为1:1时,制备的非负载型催化剂具有最高的催化加氢性能,并采用“火山模型”对活性差异进行了讨论。  相似文献   

4.
合成了一系列不同Ni、W比例的复合金属氧化物,并以此为前躯体制备高金属含量Ni-W催化剂,以萘、喹啉和二苯并噻吩为模型化合物进行了竞争性加氢脱芳烃、加氢脱氮及加氢脱硫反应研究;采用XRD、N2吸脱附、SEM、HRTEM等手段对Ni-W复合氧化物及高金属含量Ni-W催化剂进行了表征。结果表明:Ni-W复合氧化物为一系列具有NiWO4和WO3?0.75H2O晶相的介孔物质,硫化态高金属含量Ni-W催化剂中WS2的堆垛层数为2~6层,片层长度集中在3~10 nm范围内;高金属含量Ni-W催化剂作用下的喹啉及二苯并噻吩转化率均达到90%以上,但萘的转化率较低。  相似文献   

5.
柴油超深度加氢脱硫非负载型Ni-Mo-W催化剂的研究   总被引:1,自引:0,他引:1  
采用化学合成法制备了多孔金属固溶体,以此固溶体为前驱体制备了非负载型Ni-Mo-W加氢催化剂,采用XRD、TEM方法对硫化态非负载型催化剂进行表征,并以大庆低硫FCC柴油、中东高硫柴油为原料对非负载型催化剂进行深度加氢脱硫性能试验。结果表明,非负载型硫化态Ni-Mo-W催化剂中活性相形态主要为Ni3S2和MoS2/WS2,其中MoS2/WS2堆叠层数为3~8,远高于普通负载型催化剂。该非负载型Ni-Mo-W催化剂,对国内外低硫和高硫柴油加氢脱硫反应均表现出较高的活性和稳定性。  相似文献   

6.
以硫酸铝溶液和碳酸氢铵溶液为原料,采用化学共沉淀的方法合成氧化铝的前躯物碱式碳酸铝铵(化学式为NH4[AlO(OH)]2HCO3.2H2O)。结合反应机理,研究了反应体系pH和反应温度对碱式碳酸铝铵制备的影响。所制备的碱式碳酸铝铵焙烧后生成的氧化铝粉体具有高孔体积和大孔径的特点,适合用作渣油加氢催化剂的载体材料,并可与其他拟薄水铝石复合形成满足不同要求的具有不同孔结构的载体。催化剂活性评价和工业应用结果表明,采用碱式碳酸铝铵制备的氧化铝为载体材料的渣油加氢脱金属催化剂具有良好的脱金属和降残炭性能。  相似文献   

7.
以硝酸镍为镍源,磷酸氢二铵为磷源,介孔分子筛SBA-15为载体,采用共浸渍法制备Ni2 P/SBA-15前驱体,再将一定量的偏钨酸铵水溶液引入,采用程序升温还原制备了一系列W-Ni2 P/SBA-15催化剂.采用XRD、N2吸附-脱附、NH3-TPD和XPS表征了催化剂的结构,并评价了催化剂的二苯并噻吩加氢脱硫活性.结果表明,W-Ni2 P/SBA-15催化剂中均只存在Ni2P物相;催化剂的比表面积和孔体积随着W含量的增加先增大后减小;强酸量和总酸量都随W含量的增加有明显增加;W的加入使得催化剂表面的Niδ+含量有所降低,而pδ-含量有所增加;在大于360℃时,催化剂对二苯并噻吩具有很好的深度加氢脱硫活性,并且以直接脱硫生成联苯的脱硫机理为主.  相似文献   

8.
采用溶胶-凝胶法制备了不同Ti/Si比的TiO2-SiO2 复合载体,其负载的磷化镍催化剂采用等体积浸渍法和H2原位还原法制备,以喹啉为模型化合物,考察了活性组分负载量、Ni/P比、Ti/Si比对催化剂加氢脱氮性能的影响。采用N2吸附、XRD、TPR、NH3-TPD和FT-IR等技术对载体和催化剂进行了表征。结果表明:溶胶-凝胶法制成的复合载体具有较大的比表面积,其负载的磷化镍催化剂具有较好的可还原性,Ni/P摩尔比小于1.0时,还原后所形成的物相为Ni2P;当Ti/Si摩尔比为1/2、Ni/P摩尔比为1.0、Ni-P负载量(w)为25%时,Ni2P/TiO2-SiO2催化剂具有最佳的加氢脱氮效果。  相似文献   

9.
采用溶胶-凝胶法制备了不同Ti?Si比的TiO2-SiO2复合载体,其负载的磷化镍催化剂采用等体积浸渍法和H2原位还原法制备,以喹啉为模型化合物,考察了活性组分负载量、Ni?P比、Ti?Si比对催化剂加氢脱氮性能的影响。采用N2吸附、XRD、TPR、NH3-TPD和FT-IR等技术对载体和催化剂进行了表征。结果表明:溶胶-凝胶法制成的复合载体具有较大的比表面积,其负载的磷化镍催化剂具有较好的可还原性,Ni?P摩尔比小于1.0时,还原后所形成的物相为Ni2P;当Ti?Si摩尔比为1?2、Ni?P摩尔比为1.0、Ni-P负载量(w)为25%时,Ni2P?TiO2-SiO2催化剂具有最佳的加氢脱氮效果。  相似文献   

10.
以新型镍源硫代钼酸镍和四硫代钼酸铵为催化剂前驱体,通过固相反应合成一系列不同Ni/Mo(摩尔比)的非负载型加氢催化剂,用X射线衍射仪(XRD)、场发射扫描式电子显微镜(FESEM)、比表面积检测法(BET)等方法对其结构、孔体积、比表面积等进行表征。并选用二苯并噻吩(DBT)和萘为模型化合物,在250 mL间歇式高压反应釜中考察了加氢脱硫和芳烃加氢饱和性能。结果表明:制备的非负载型Ni-Mo加氢催化剂均具有Ni_3S_2和MoS_2晶相,并且随着镍含量的减少,催化剂的比表面积和孔体积呈增大的趋势;在反应压力为6.5 MPa,反应温度为280℃,体积空速为0.9 h~(-1)的条件下,SNiMo对DBT的转化率为99.79%,并且深度加氢能力最强。  相似文献   

11.
在共沉淀法制备三元(Ni-Mo-W)非负载型催化剂过程中加入聚乙二醇(PEG),采用XRD、BET及微反活性评价考察PEG的最佳相对分子质量及加入量,采用Py-IR,SEM,TEM等后续表征分析最佳条件下PEG对催化剂性质和脱硫活性的影响,采用XRD、LRS对Ni-Mo-W复合氧化物的结构进行深入探究。结果表明:在PEG的相对分子质量为600、加入量为Mo物质的量的20%时,催化剂对劣质柴油的脱硫率最高,可达99.8%;此条件下的Ni-Mo-W非负载型催化剂形态规整,活性组分分布均匀,相互间排列有序,孔隙最为发达,酸位得到充分暴露。合成的Ni-Mo-W复合氧化物是具有不同Mo、W配位的新型Ni基化合物,Ni-W构成主体及表层,内部填充部分主要由Ni-Mo构成。  相似文献   

12.
非负载Co-Mo催化剂的制备、表征与加氢脱硫活性评价   总被引:2,自引:0,他引:2  
采用溶胶-凝胶法制备了Co-Mo超细复合氧化物,进而制得了非负载型Co-Mo催化剂;采用XRD、IR、BET、SEM等考察了n(A1):n(Co+Mo)、n(Mo):n(Co+Mo)和CA(柠檬酸)/(Co+Mo)的摩尔比对对应催化剂的表面形貌、结构和催化性能的影响.结果表明:制备的非负载催化剂以β-CoMoO<,4>...  相似文献   

13.
采用共沉淀法制备Ni-Mo-W型体相催化剂前驱体,通过干燥、成型、焙烧制得Ni-Mo-W型体相催化剂,采用X射线粉末衍射分析(XRD)、X 射线光电子能谱分析(XPS)、扫描电镜分析(SEM)对催化剂进行表征,对硝酸镍溶液与钼酸铵、偏钨酸铵溶液共沉淀过程的机理进行了研究。研究结果表明,原料Ni(NO3)2?6H2O,(NH4)10W12O41?xH2O,(NH4)6Mo7O?4H2O经沉淀剂氨水调节pH,在适当条件下完成沉淀,其沉淀组成以(NH4)Ni2Mo2O8(OH)?H2O、Ni4W6O21(OH)2?4H2O为主,经焙烧形成NiMoO4、NiWO4。溶液中的镍更容易与钨酸根离子结合,所以镍、钨会首先反应生成层状复合物的主体层板,钼酸根离子随后进入层中,与层板发生相互作用,最终生成体相Ni-Mo-W型催化剂前驱体。  相似文献   

14.
采用溶胶凝胶法制备介孔MoO3-ZrO2复合氧化物,利用XRD、N2吸附-脱附及SEM对其进行表征,考察焙烧温度对其晶相结构、比表面积、孔径以及形貌特征的影响;以FCC汽油为原料,对MoO3-ZrO2经预硫化后制得的催化剂的加氢脱硫活性进行评价。结果表明:在焙烧温度为550 ℃时,ZrO2表面出现蠕虫状结构;焙烧温度为650 ℃时,开始出现Zr(MoO4)2特征峰;焙烧温度为700 ℃时,ZrO2由四方相向单斜相转化;适当提高焙烧温度有助于MoO3-ZrO2复合氧化物平均孔径的增大以及得到较适合的比表面积,但过高的焙烧温度会使复合氧化物烧结断裂;经650 ℃焙烧得到的MoO3-ZrO2复合氧化物催化剂具有较高的脱硫活性,对FCC汽油的脱硫率可达70.3%。  相似文献   

15.
以NiMoW复合氧化物为前躯体制备高活性非负载型NiMoW加氢催化剂,考察了制备过程中黏结剂、胶溶剂、熟化处理等因素对催化剂性能的影响。采用BET、XRD、SEM、TEM、强度测定、堆密度测定等手段对催化剂进行表征,采用模拟柴油体系和真实柴油为原料对催化剂进行活性评价。结果表明,选择合适的黏结剂、胶溶剂以及适宜的熟化处理方法,不但可以保持催化剂原有活性相结构,而且能减小催化剂颗粒度,增大比表面积及孔容、孔径,提高催化剂的机械强度。在345℃、7.0 MPa、空速2.0 h-1条件下,采用熟化处理制备的NiMoW-H催化剂,可将柴油中的硫质量分数由3690 μg/g降低到9 μg/g,而NiMoP/Al2O3参比催化剂仅降低到103 μg/g。  相似文献   

16.
分别以醋酸镍和硝酸镍为镍源,采用浸渍方法制备不同镍负载量的吸附脱硫催化剂,在小型固定流化床反应器对催化剂的脱硫性能进行评价,考察不同镍源及镍负载量对催化剂脱硫性能及辛烷值保留能力的影响。结果表明:在相同镍负载量的情况下,采用醋酸镍为镍源比采用硝酸镍为镍源制备的催化剂具有更大的比表面积和金属分散度、更高的初始脱硫活性和平衡活性及辛烷值保留能力。  相似文献   

17.
焙烧温度对镁铝复合氧化物载体性能的影响   总被引:2,自引:2,他引:0  
采用混合固相反应法制备了一系列不同焙烧温度的镁铝复合氧化物载体,并负载Co-Mo活性组分制备了Co-Mo/MgO-Al2O3催化剂;通过扫描电子显微镜、傅里叶变换红外光谱、N2吸附-脱附、X射线衍射、热分析和质量滴定等方法考察了焙烧温度对载体性能的影响,并评价了Co-Mo/MgO-Al2O3催化剂在水煤气变换反应中的活性。实验结果表明,500~800℃焙烧的镁铝复合氧化物载体以MgAl2O4.xMgO.yAl2O3无定形复合氧化物形式存在,900~1 300℃焙烧的镁铝复合氧化物载体转变为MgAl2O4尖晶石;600~800℃焙烧的镁铝复合氧化物载体具有适宜的比表面积和孔结构,有较高的零电荷点,有利于Co-Mo活性组分的吸附和分散,以其为载体制备的Co-Mo/Al2O3-MgO催化剂具有很高的活性。  相似文献   

18.
以共沉淀法制备的不同铈锆原子比的CexZr1-xO2为载体,采用直接阴离子交换法(DAE)制备了Au/CexZr1-xO2催化剂。通过X射线衍射、N2物理吸附和H2程序升温还原等技术分别对载体和催化剂进行了表征,同时评价了Au/CexZr1-xO2催化剂的CO氧化活性。结果表明,以硝酸铈铵为前驱体可制备单相铈锆固溶体,Zr的加入提高了CeO2的比表面积,改善了其孔结构。负载Au有利于促进铈锆固溶体的还原。在Au/CexZr1-xO2系列催化剂中,Au/Ce0.75Zr0.25O2催化剂表现出最佳的CO氧化性能。  相似文献   

19.
The sulfur specification for diesel fuel has been tightened exponentially over the years. To help resolve this question, the authors aimed to develop a novel unsupported Ni-Mo sulfide catalyst with ultra-high hydrogenation performance, for the production of clean diesel fuel. This catalyst was prepared directly with ammonium tetrathiomolybdate and basic nickel carbonate as the catalyst precursors through the low-temperature solid-state surface reaction. XRD and HRTEM characterization results indicate that the stacking number of MoS2 layers is very high in the unsupported Ni-Mo sulfide. The evaluation results of model compound (dibenzothiophene) and FCC diesel fuel demonstrate that the unsupported Ni-Mo sulfide catalyst has excellent hydrodesulfurization activity and ultra-high hydrogenation performance, which can be attributed to the high stacking number of MoS2 layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号