首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《土工基础》2015,(4):13-18
深大基坑的开挖支护内支撑体系中,一种斜抛撑的形式被越来越广泛地应用。通过大型通用有限元软件ABAQUS对支撑桩加承台的斜抛撑形式在深大基坑中的应用进行研究分析,并与常规应用的水平撑在深大基坑中的数值模拟结果进行对比,重点分析了基坑开挖过程中周围土体的应力状态与支护结构受力,同时比较两种不同的内支撑体系深大基坑外地表面土体沉降、基坑底部土体隆起及围护桩的水平位移不同变化情况,探讨斜抛撑的支护结构受力机理,并且得出支撑桩加承台的斜抛撑支护体系在控制围护桩水平位移和基坑外地表面土体沉降的优点及控制效果。  相似文献   

2.
以某斜抛撑基坑工程为例,通过分析盆式开挖阶段及斜抛撑下方土体开挖阶段的围护桩水平变形及周边建筑物沉降变形的监测资料,得到了两个开挖阶段中围护桩变形及周边建筑物沉降的变化规律。结果表明,随土方开挖,围护桩变形及周边建筑物沉降均增大,围护桩变形及周边建筑物沉降主要发生在盆式开挖阶段,因此,围护桩变形及建筑物沉降控制应以盆式开挖阶段为主。  相似文献   

3.
郑守铭 《福建建筑》2022,(10):88-92
以某综合管廊基坑为例,基于HSS模型,运用有限元软件,对基坑支护结构受力进行数值模拟,探究综合管廊基坑内力、变形发展规律。研究结果表明:受支撑刚度影响,随开挖深度增加,围护桩整体变形由悬臂式转变为内凸式,桩体最大水平位移位于坑底附近。与HSS模型相比,MC模型计算得到的桩体底部水平位移值偏大,约是前者的1.60倍。地表沉降曲线呈抛物线形分布,最大沉降发生在距基坑10 m左右。MC模型计算出的沉降在坑边产生较大土体隆起。钢板桩于内支撑处产生弯矩突变,位于基坑底面偏上处;2种土体本构模型计算出的弯矩值及分布形式相差不大。当基坑支护有两道内支撑时,第一道支撑轴力先增后减;第二道支撑在安装后,轴力逐步增大,逐渐成为主受力支撑。  相似文献   

4.
杭州深厚软 黏 土中某深大基坑的性状研究   总被引:2,自引:0,他引:2  
应宏伟  杨永文 《岩土工程学报》2011,33(12):1838-1846
介绍了杭州深厚软黏土中深度为14.85~17.35 m、采用密排连续排桩作为围护墙的大型多层支撑基坑工程监测实例。实测内容包括基坑施工过程中围护墙与土体水平位移、周围地面沉降、内支撑轴力、土压力和孔隙水压力等。研究表明:软黏土中大型基坑的水平位移明显大于狭窄基坑,基础底板施工期间基坑的“蠕变”现象明显,开挖深度、空间效应、隔断墙的设置、坑壁临近既有地下室等均是影响基坑水平位移的重要因素;坑外横向地表沉降呈抛物线型分布,沉降影响范围约为开挖深度的2.5倍, 最大沉降位于坑外约0.67倍挖深处,最大沉降与最大水平位移关系约为 ,坑外纵向沉降大致呈马鞍形,沉降最大值位于基坑中部附近,纵向沉降影响范围大于基坑开挖范围;多层支撑支护结构中各层支撑的轴力随开挖和拆撑工况的变化而动态调整,第2层支撑轴力明显大于其它2层支撑;深厚软黏土中多支撑支护结构的土压力分布在支撑深度范围表现出“土拱”效应;随开挖的进行坑外土体的孔压逐渐减小,由于开挖卸荷产生了负超静孔压。  相似文献   

5.
依托实际工程,通过现场监测数据研究无岩肩吊脚墙支护下基坑开挖受力及变形规律。结果表明:无岩肩吊脚墙支护可保证土岩基坑开挖稳定;吊脚墙竖向位移在基坑开挖过程中变化不显著,吊脚墙底部岩壁段保持稳定;随基坑开挖,吊脚墙最大侧移位置逐渐上移,位移值增大速率随开挖逐渐减小;由于采用多道混撑,下部支撑轴力分担较多,第一道支撑轴力较小;开挖后期,地表沉降有较大幅度增大,地表沉降空间分布与带岩肩支护方式相似。  相似文献   

6.
以某城市地铁车站深基坑开挖支护施工为工程背景,针对城市复杂环境下的深基坑开挖和支护的施工过程开展了数值仿真分析。有限元分析结果表明:随着基坑开挖深度和范围的增加,引起周围地层发生向基坑内的变形,其水平位移随着其距基坑边距离的增大而逐渐减小,基坑开挖对周围地层水平位移的影响范围约30 m;而基坑开挖引起的周围土体地表沉降量,则呈现先增大后减小的趋势,并且在距基坑边20 m范围内的地表沉降量较大;分析基坑开挖过程中支护结构的变形规律,可以发现随着基坑开挖深度增加,支护结构两侧向基坑中间部分鼓出;基坑支撑轴力的最大值发生在拆除第3道支撑时,此时整个支撑体系处于最不利工况,应引起重视。  相似文献   

7.
介绍了天津滨海国际机场扩建交通中心工程第三合同段基坑"盖挖逆作法"的施工过程,通过对深基坑开挖过程中的支护结构内力、坑周土体水平及竖向位移等的现场监测和数值模拟分析,讨论了基坑开挖过程中支护结构受力的特点及其对周围环境的影响,得到基坑周边土体水平位移的变化规律。分析表明,土方开挖对基坑周围土体的影响范围约为两倍的开挖深度;开挖过程中土体及围护桩最大位移位置基本上都处于基坑开挖面附近;在基坑施工过程中,应该尽量减小无支撑暴露的时间,加快底板浇筑,防止因土体流变而产生过大的位移。  相似文献   

8.
针对某三层地下停车库基坑支护结构,进行了围护桩的支撑道数、支撑位置、围护桩的桩型、嵌固深度以及土层参数取值等五方面的优化设计,比较了有、无对撑支撑方式的两种支撑结构。计算表明,多种基坑支护方案的比较不仅节省工程造价,而且能提高基坑支护工程抗风险的能力。采用边坡加支护桩和内支撑基坑支护方案对开挖深度超过10m的基坑,可设两道支撑,支撑位置应尽量往下压,同时应控制基坑水平向的位移量。内支撑平面布局应综合考虑各种因素,尽量选用无对撑支撑方式。  相似文献   

9.
内撑式支护软土基坑有限元分析   总被引:6,自引:0,他引:6  
采用弹塑性有限元理论模拟内撑式支护软土基坑的施工过程,并分析了内支撑的层数、围护桩的插入深度、初始应力场对基坑开挖后围护桩的受力状态和基坑土层的位移分布的影响。结果表明:采用多层支撑能更好的控制基坑壁的水平位移和地表沉降;初始应力场对有限元分析结果有重要的影响,在有限元计算中应考虑其合理取值。  相似文献   

10.
天津某深基坑工程施工监测及数值模拟分析   总被引:7,自引:0,他引:7  
介绍了天津铜锣湾广场深基坑工程开挖实例。通过对深基坑开挖过程中的支护结构内力、坑周土体水平位移等的现场监测和数值模拟分析,讨论了基坑开挖过程中支护结构受力的特点及其对周围环境的影响,得到基坑周边土体水平位移的变化规律,为考虑施工因素的深基坑开挖及支护结构设计提供了依据。分析表明:土方开挖对基坑周围土体的影响范围约为两倍的开挖深度;开挖过程中土体及围护桩最大位移位置基本上都处于基坑开挖面附近;在基坑施工过程中,应该尽量减小无支撑暴露的时间,加快底板浇注,防止因土体流变而产生过大的位移;对于环梁支撑体系,如果支撑布置不规则,会造成受力不均,容易产生较大的弯矩值,会对环梁支护结构产生不利影响。  相似文献   

11.
针对上海高压缩性、高塑性地层,以上海竹园污水处理厂生物池基坑项目为例,通过分析基坑围护墙顶的位移、灌注桩的水平位移、支撑轴力,揭示斜抛撑盆式开挖基坑的变形规律及环境效应。分析得到以下结论:斜抛撑盆式开挖基坑的变形具有明显的阶段性,与基坑的开挖工序有关;软土的高塑性不利于围护桩的围护作用,斜撑起主要作用;斜抛撑盆式开挖基坑对环境的扰动较大,不同范围内的构筑物对基坑开挖的响应不同。  相似文献   

12.
以某高层建筑深基坑施工为研究背景,根据基坑围护方案、监测方案等资料,结合监测数据,分析基坑开挖阶段围护桩的变形特性。结果表明基坑施工期围护桩的累计深层水平位移主要发生在土方开挖阶段;随基坑开挖深度增加及混凝土支撑的浇筑,围护桩的变形曲线由前倾型逐渐向弓形变化,累计深层水平位移量随之增大,最大累计位移发生位置也下移;随着测次增加,桩身第1道支撑位置的累计深层水平位移值较小,而第2,3道支撑及坑底位置的变形值呈现波动性增长趋势,围护桩变形最大的关键部位出现在桩身第3道支撑位置。  相似文献   

13.
加筋水泥土桩锚墙支护的基坑监测分析   总被引:3,自引:0,他引:3  
开挖深度内地基土为淤泥质黏土,基坑西侧采用加筋水泥土桩锚大放坡开挖,其余三侧采用加筋水泥土桩锚墙支护方式支护。发现,基坑坑顶水平位移随着开挖深度的增加线性增大,到地下室封顶时,施工通道处的坑顶位移,要比不施加荷载的坑顶大2倍以上。从水平位移分布来看,基坑的阴角最小,阳角最大,基坑每侧跨中也大。对于水泥土桩锚墙支护形式,墙后土体的深层水平位移分布存在位移零点,而位移零点恰好出现在水泥土墙底附近。大放坡开挖,后面的土体也存在位移零点,但零点位置明显比有墙的浅。另外,基坑到底后,如果坑顶不作用荷载,深层水平位移变化不大,作用荷载后,深层水平位移增加较大,甚至比基坑到底时的位移高一倍以上。基坑后面路面沉降随开挖深度增加而增大,但沉降速率最大出现在基坑到底后结构开始施工的期间内。基坑开挖过程中,最大沉降出现在距离基坑约8m的地方,而不是基坑坑顶,沉降分布曲线呈凹形。靠近地面的第一排桩锚受力最大,由于第一排桩锚的屏蔽作用,分散了应力,从而以下的第二、第三、第四排桩锚的抗拔力增加不显著。  相似文献   

14.
以上海某基坑工程为背景,应用Plaxis 2D有限元软件、采用土体硬化本构模型(HS)对新型桩–土–撑组合支护体系进行计算分析,得到了该组合支护体系在基坑开挖时的变形规律。计算值通过与现场实测值对比分析发现:Plaxis2D能够较好地预测新型桩–土–撑组合支护体系实际基坑开挖的围护结构变形;钢管斜撑的存在改变了传统双排桩的变形规律,能够有效减小围护桩顶位移;基坑变形满足基坑安全和变形要求;该基坑支护体系无内支撑,不仅方便基坑开挖,而且不会因为临时支撑的施工和拆除产生大量建筑垃圾,安全经济、绿色环保,可以为软土地区的深大基坑工程提供参考。  相似文献   

15.
介绍了武汉某深基坑前排倾斜双排桩无支撑支护设计过程,有限元方法可以为支护结构选出合适的设计参数。通过监测资料分析了基坑开挖过程中桩身水平位移变化过程,验证了设计的合理性。分析有限元软件计算结果与监测资料得到以下结论:(1)前排桩倾角增大,基坑变形减小,减小程度随倾角增大而变弱,结合旋挖钻机施工角度,选择15°倾角效果较为合适;(2)增大桩长、桩间距或者连梁长度可以减小支护结构变形与内力,需考虑现场条件综合确定支护结构参数;(3)开挖过程中桩身变形逐渐增大,后排桩桩顶位移最大,前排斜桩最大位移并不在桩顶,而是在桩顶以下0.27倍桩长位置,倾斜桩支护基坑变形模式类似桩撑支护。  相似文献   

16.
为研究深基坑开挖对基坑及周围土体的位移影响,采用有限元软件ABAQUS模拟基坑开挖过程,对基坑内部、支护结构及临近土体位移进行研究。研究表明开挖初期,基坑后侧土体沉降最大处位于开挖深度1~2倍距离范围;开挖深度增大,基坑后侧土体沉降出现两个极值,分别发生锚杆自由段与锚杆尾部处;开挖深度较大时,在靠近支护桩位置出现大于基坑中心位置隆起量的凸起。支护结构最大侧移点位于坑底以上2~3m处。增加锚杆预应力或支护结构刚度,结构最大侧移、支护桩附近回弹凸起、坑后锚杆自由段处沉降量均减小,刚度增加前期的侧移控制效果更为显著。增加锚杆预应力,支护结构最大侧移点下降至坑底以下,排桩变形由"大肚子"状逐渐变为"S"形。  相似文献   

17.
赵媛 《建筑施工》2022,(3):471-474
基于江苏某电力公司大楼基坑支护工程,分析基坑开挖支护结构的稳定性,对基坑开挖前支护结构设计进行稳定性验算,对整个支护结构施工过程进行实时监测。得出结论:通过“桩-撑-锚”支护结构稳定性理论计算,表明该工程支护结构的设计方案是可行的;在监测期间,周边管线、支护结构水平垂直位移及深层土体水平侧向位移监测点的变形速率及累计变化量在允许范围之内,均未达到设计预警值;从支撑轴力监测结果来看,基坑第2道支撑拆除期间,第1道支撑受力变大,部分监测点达到报警值,反映了支撑拆除期间支护结构受到一定影响,但未造成破坏。  相似文献   

18.
当开挖地层范围内存在淤泥软土时,深基坑开挖的变形需要引起重视。对福州某深基坑工程开展有限元模拟,根据计算结果,分析了不同工况下支护结构的变形和受力、周围地表沉降、基坑坑内隆起等分布规律。在淤泥软土深基坑,支撑梁面的标高确定十分重要,合理的布置内支撑梁数量和间距,可显著减小围护结构的最大变形值。结果表明:基坑在不同工况下,随开挖深度的增加,第n+1道支撑梁的变形、轴力明显比第n道支撑梁大;第n+1道支撑梁的剪力比第n道支撑梁小;随着开挖深度加深,基坑坑底的隆起变形值逐渐增大;围护桩的最大位移值和弯矩值随开挖深度增加逐渐增大。施工支撑梁后,桩身最大位移和弯矩位于最下面一道内支撑和坑底的腰腹部位。基坑阳角部位和长跨度边的中间部位的变形最大,基坑的最大隆起变形主要发生基坑中部,距离围护桩越近,隆起变形值越小。  相似文献   

19.
黄尧端 《江西建材》2024,(2):126-128+134
为探究建筑基坑支护中斜桩支撑体系的适用性,保证基坑支护加固效果,文中结合六盘水市汇金大厦工程基坑支护实践,通过PLAXIS3D数值模型,对基坑开挖过程中斜桩支撑体系受力及变形情况实施模拟分析。结果表明,基坑开挖过程中,土体总体位移为29.6 mm,其中,x、y、z向位移分别为23.7、4.9、17.8 mm,基坑稳定性符合标准要求。基坑开挖深度越大,斜桩、竖桩侧向位移越大,其最大位移分别为6.96、8.76 mm,均未超出规范允许值,符合标准要求。模拟分析有效验证了斜桩支撑结构在基坑支护中应用的可行性。  相似文献   

20.
为了研究泥炭质土环境下基坑的变形情况,本文结合昆明某大型环形板撑基坑工程实例,根据基坑土体深层水平位移和基坑周边高架桥桥墩变形监测数据,分析其施工过程中基坑的变形情况。研究表明,该泥炭质土基坑的土体深层水平位移量较大;两道环形板撑施工完成后土体位移的增长速率明显减缓;高架桥桥墩的水平位移和竖向沉降始终未达到监测报警值;本工程所采用的支护桩+支承桩+二道钢筋混凝土环形板撑支护体系能较为有效地控制土体变形。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号