首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dispersion and exfoliation of single wall carbon nanotubes (SWNTs) have been studied in poly(acrylonitrile) (PAN), poly(p‐phenylene benzobisoxazole) (PBO) solutions, and composite fibers using transmission electron microscopy. As a result of polymer assisted dispersion and exfoliation, the average SWNT bundle diameter in SWNT/PAN (5/95) was 11 nm, while the average diameter for the pristine SWNT bundles was about 30 nm. High resolution TEM of SWNT/PBO (10/90) composite fibers did not reveal the presence of SWNT aggregates or bundles, suggesting SWNT exfoliation as individuals. On the other hand, both oriented and unoriented nanotube bundles have been observed in SWNT/PBO samples containing 15 wt % nanotubes. Carbon nanotubes are 105 times more radiation resistant than flexible polymers such as polyethylene, and 103 times more resistant than highly radiation resistant polymers such as PBO. Therefore in the high resolution TEM study of nanotube/polymer composites, nanotubes can be observed long after the polymer has been damaged by electron radiation. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 985–989, 2005  相似文献   

2.
The precursor fiber quality has a large impact on carbon fiber processing in terms of its performance, production yield, and cost. Polyacrylonitrile precursor fibers have been used commercially to produce strong carbon fibers with average tensile strength of 6.6 GPa. There is a scope to improve the average tensile strength of carbon fibers, since only 10% of their theoretical strength has been achieved thus far. Most attempts to increase the tensile strength of carbon fibers have been made during the conversion of precursor fiber to carbon fiber. This review highlights the potential opportunities to enhance the quality of the polyacrylonitrile‐based precursor fiber during polymer synthesis, spinning, and postspinning. These high‐quality precursor fibers can lead to new generation carbon fibers with improved tensile strength for high‐performance applications. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43963.  相似文献   

3.
Meltblown fibers are typically produced using a die technology based on the slot concept, an extension of the sheet die technology with a series of holes substituting the center rectangular slot of the sheet die. While this prevalent technology has met with considerable success, an economical, facile design would be desirable. In this study a new parallel plate die concept to fabricate micro‐meltblown fibers that offers simplicity, ease of use, and low cost was examined. The new die concept had parallel plates forming channels for polymer melt to flow through with a set of air holes surrounding them. This die design produced meltblown fibrous media with fibers in the range of 3–10 μm with pore size between 20 and 60 microns. The underlying mechanisms leading to such large fiber size formation and its implication in air filtration performance has been discussed. While conventional meltblown die generates fibers of smaller diameter and webs with higher filtration efficiency than the parallel plate geometry, design modifications could enhance the parallel plate meltblown die performance and make it a viable alternative. These die adaptations that include reducing air flow resistance, increasing the number of air nozzles around the polymer nozzles, recessing the polymer spinnerets above the die face, and having inclined air channels to increase the drag force on the fibers has been discussed. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42998.  相似文献   

4.
The electrospinning method has been employed to fabricate ultrafine nanofibers of high‐performance polyarylene ether nitriles (PEN) and PEN/Fe‐phthalocyanine/Fe3O4 nanocomposite fibers for the first time. Through optimizing the operational conditions, such as polymer concentration, applied electric voltage, federate, and distance between needle tip and collector, bead‐free and uniform fibers with smooth surfaces and certain diameters were obtained. The morphology of the PEN nanofibers is correlated to the corresponding rheological behaviors of the polymer solutions. The nanocomposite fibers showed a beads‐in‐string structures without agglomeration after introducing the Fe‐phthalocyanine/Fe3O4 hybrid microspheres in the polymer fibers. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) reveal an enhanced thermal stability of the nanocomposite fibers after introducing the hybrids. The glass transition temperature (Tg) of the nanocomposite fibers increases by 10°C with 30 wt % hybrid microspheres, compared with those of the pure PEN fibers. The magnetic properties of the PEN/Fe‐phthalocyanine/Fe3O4 nanocomposite fibers are different from those of the hybrid microspheres. The hybrid microspheres in the composite nanofibers become magnetically harder with a much larger coercivity than that of the fillers. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

5.
Electrospinning is a very simple and versatile method of creating polymer‐based high‐functional and high‐performance nanofibers. But most of the investigations are not systematic and describe the electrospinning process without quantitative accuracy. Inconsistent and even opposite results have been reported, which has hindered the consistent interpretation of the experiments. Orthogonal experimental method was used to investigate qualitative and quantitative correlations between fiber characteristics (diameters and morphologies) and the processing and materials parameters. Uniform fibers can be obtained without any beads by proper selection of the processing parameters, and a lower glass transition temperature was observed for electrospun fibers than that of native polymer. Results of statistical analysis showed that significant influences were observed for polymer molecular weight and solution concentration on fiber diameters, and there were significant effects of polymer molecular weight, solution concentration, and solvent system on fiber morphologies. Meanwhile, solution concentration and polymer molecular weight, and polymer molecular weight and solvent system had obvious interaction effects. Regression analysis revealed quantitative relations of fiber diameters and beads percent, that is, Y1 = 72.8X1 ? 8.1X2 + 138.8, Y2 = ?3.2X1 + 0.4X2 + 60.5, where Y1 is fiber diameter (nm), Y2 beads percent (%), X1 solution concentration (%, w/w), and X2 polymer molecular weight (kDa). Validation test showed that the experimental values of fiber size and beads percent were in good agreement with the calculated ones. Based on these results, optimal conditions could be obtained for predetermined diameters and morphologies for electrospun fibers. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3105–3112, 2007  相似文献   

6.
Natural fibers, such as Flax, Sisal, Hibiscus Sabdariffa, and Grewia optiva (GO) possess good reinforcing capability when properly compounded with polymers. These fibers are relatively inexpensive, easily available from renewable resources, and possess favorable values of specific strength and specific modulus. The mechanical performance of natural fiber‐reinforced polymers (FRPs) is often limited owing to a weak fiber‐ matrix interface. In contrast, urea–formaldehyde (UF) resins are well known to have a strong adhesion to most cellulose‐containing materials. This article deals with the synthesis of short G. optiva fiber‐reinforced UF polymer matrix‐based composites. G. optiva fiber‐reinforced UF composites processed by compression molding have been studied by evaluating their mechanical, physical, and chemical properties. This work reveals that mechanical properties such as: tensile strength, compressive strength, flexural strength, and wear resistance of the UF matrix increase up to 30% fiber loading and then decreases for higher loading when fibers are incorporated into the polymer matrix. Morphological and thermal studies of the matrix, fiber, and short FRP composites have also been carried out. The swelling, moisture absorbance, chemical resistance, and water uptake behavior of these composites have also been carried out at different intervals. The results obtained lay emphasis on the utilization of these fibers, as potential reinforcing materials in bio‐based polymer composites. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

7.
Polyester (PET) has wide applications in textile industries as textile fiber and its share continues to grow. Substantial quantities of cotton/polyester blend fabrics are disposed every year due to technical challenges, which pose a big environmental and waste‐dumping problem. The aim of this study is to evaluate the potential of discarded cotton/PET fabrics as raw materials for composites. If their inherent reinforcement properties can be used in composites, an ecological footprint issue can be solved. In this study, we investigate three concepts for reuse of cotton/PET fabrics for composites: compression molding above the Tm of PETs, use of a matrix derived from renewable soybean oil, use of thermoplastic copolyester/polyester bi‐component fibers as matrix. All three concepts have been explored to make them available for wider applications. The effects of processing parameters such as compression temperature, time and pressure are considered in all three cases. The third concept gives the most appealing properties, which combine good tensile properties with toughness; more than four times better tensile strength than the first concept; and 2.2 times better than the second concept. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40687.  相似文献   

8.
In the recent years, lignocellulosic fibers that originate from a renewable source have been found to provide good reinforcement in polymer matrices. Among the natural fibers, pineapple leaf fiber (PALF) exhibits excellent mechanical properties, besides possessing low density, high stiffness, and low cost. The dynamic mechanical properties, storage modulus (E′), and loss tangent of PALF‐reinforced polyester (PER) composites were evaluated at three frequencies 0.1, 1, and 10 Hz and temperatures ranging from 30 to 200°C. Addition of PALF of 30 mm length (aspect ratio 600) was found to increase the storage modulus leading to a maximum value at 40 wt%. The glass transition temperature (Tg) of the composite of 40 wt% showed a positive shift indicating high polymer/fiber interaction. A new relaxation is observed at 40 wt% showing the presence of a strong interphase at all aspect ratios. SEM photographs of fracture surfaces of composites confirm the results obtained from static and dynamic mechanical analysis. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

9.
In this study, conducting banana fibers (BF) were obtained through in situ oxidative polymerization of pyrrole (Py) on the BF surface using ferric chloride hexahydratate (FeCl3·6H2O) as an oxidant. Suitable reaction conditions are outlined for the polymerization of Py: oxidant/monomer molar ratio, Py concentration and polymerization time of 2/1, 0.05 mol.L−1 and 30 min, respectively. Under these conditions, high‐quality conducting fibers containing polyPy and BF (PPy‐BF) were obtained with an electrical resistivity as low as 0.54 Ω.cm. The PPy‐BF was blended with different concentrations of polyurethane (PU) by mixing the two components in a vacuum chamber and then applying compression molding. The electrical resistivity of composites with 25 wt% of PPy‐BF was around 1.8 × 105 Ωcm, which is approximately 108 times lower than that found for pure PU. Moreover, PU/PPy‐BF composites exhibited higher mechanical properties than pure PU and PU/PPy, indicating that these conducting fibers can also be used as reinforcement for polymer matrices. The properties of the PPy‐BF obtained by the method described herein open interesting possibilities for novel applications of electrically conducting fibers, from smart sensors to new conducting fillers that can be incorporated into several polymer matrixes to develop conducting polymer composites with good mechanical properties.POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

10.
Currently, there is a demand for new engineering materials presenting a combination of strength, low density, processing easiness, and reduced costs. In this context, polymer matrix composites reinforced by natural fibers have been studied in recent years due to their ecological and economic advantages. Some fibers are still little explored in literature despite presenting a great potential as reinforcement like Luffa cylindrica. The present work aims at the preparation and characterization of a vinylester thermoset matrix composite material reinforced by fibers of the natural L. cylindrica fruit after modification treatments. In this study, extraction treatments in organic solvents, mercerization, and a quite new esterification with BTDA dianhydrides were used and the results showed that in all cases, the composite materials reinforced by Luffa fibers have showed improvements in mechanical and thermal properties compared to the vinylester matrix. As an example, 50% tensile increase was obtained for the composite reinforced by fibers esterified with benzophenone tetracarboxylic dianhydride when compared with thermoset matrix. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

11.
Composites formulated with an epoxy matrix, kenaf fibers, and the residuals of the wine industry are investigated at different compositions. The microstructure and the mechanical properties of the composites have been studied, as well as their moisture uptake. A proper mix design of the composite can allow the waste inclusion as filler either increasing or providing mechanical properties equal to those of the plain matrix. The increase in the water permeability induced by the waste is lower than that of induced by the kenaf fibers. Because of the simple mixing and pretreatment operation, this easy‐to‐handle recycling route may decrease the overall cost of the material reducing the amount of polymer matrix and offers a valuable alternative to damping. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46234.  相似文献   

12.
A novel bio‐based composite material, suitable for electronic as well as automotive and aeronautical applications, was developed from soybean oils and keratin feather fibers (KF). This environmentally friendly, low‐cost composite can be a substitute for petroleum‐based composite materials. Keratin fibers are a hollow, light, and tough material and are compatible with several soybean (S) resins, such as acrylated epoxidized soybean oil (AESO). The new KFS lightweight composites have a density ρ ≈ 1 g/cm3, when the KF volume fraction is 30%. The hollow keratin fibers were not filled by resin infusion and the composite retained a significant volume of air in the hollow structure of the fibers. Due to the retained air, the dielectric constant, k, of the composite material was in the range of 1.7–2.7, depending on the fiber volume fraction, and these values are significantly lower than the conventional silicon dioxide or epoxy, or polymer dielectric insulators. The coefficient of thermal expansion (CTE) of the 30 wt % composite was 67.4 ppm/°C; this value is low enough for electronic application and similar to the value of silicon materials or polyimides used in printed circuit boards. The water absorption of the AESO polymer was 0.5 wt % at equilibrium and the diffusion coefficient in the KFS composites was dependent on the keratin fiber content. The incorporation of keratin fibers in the soy oil polymer enhanced the mechanical properties such as storage modulus, fracture toughness, and flexural properties, ca. 100% increase at 30 vol %. The fracture energy of a single keratin fiber in the composite was determined to be about 3 kJ/m2 with a fracture stress of about 100–200 MPa. Considerable improvements in the KFS composite properties should be possible by optimization of the resin structure and fiber selection. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 95: 1524–1538, 2005  相似文献   

13.
In this article, the results of the design of recycling–reuse facilities for transformation of solid–polymer composite waste into polymer mortars and concrete structures for the low‐cost building industry have been presented. Thermoplastic polymer matrix composites based on polylactic acid (PLA) reinforced with natural fibers (rice husks and kenaf fibers) have been recycled and reused as reinforcement. Polymer mortars with unsaturated polyester resin as a binder (commercially available orthophthalic liquid polyester with 35% monomer content) have been prepared by mixing foundry sand and milled recycled eco‐composites (milled size of 0.050 mm) in mix proportions of 40/20/40 %/% wt. The obtained materials have been analyzed with standard test methods (mechanical tests, thermogravimetrical analysis (TGA), dynamic‐mechanical analysis (DMTA), differential scanning calorimtery (DSC), and scanning electron microscopy (SEM)). POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers  相似文献   

14.
Electrically conductive rubberlike copolymer–carbon fiber composites have been prepared by either a solution method or a concentrated emulsion method. In the former procedure, carbon fibers were introduced with stirring in a copolymer–toluene solution, and the polymer–fiber composites were precipitated by extracting the solvent with methanol. In the latter procedure, a pastelike concentrated emulsion of copolymer–toluene solution in an aqueous solution of sodium dodecylsulfate (SDS) was first formed, and the carbon fibers were mechanically blended with the concentrated emulsion. The polymer–carbon fiber composites were precipitated by extracting the toluene and water with methanol. Four kinds of rubberlike copolymers have been used: styrene/ethylene–butylene/styrene triblock copolymer (SES), styrene/butadiene/styrene triblock copolymer (SBS), ethylene/propene/ethylene triblock copolymer (EPE), and ethylene/vinylacetate copolymer (EVA). Short (L = 0.1 mm)- and medium (L = 5 mm)-length carbon fibers were employed. The composites were hot-pressed in a Laboratory Press to form a sheet. The effects of the two methodologies on the electrical conductivity and mechanical properties of the sheets were investigated by changing the type of polymer, the size of the carbon fibers, the volume fraction of the carbon fibers in the composites, and the hot-pressing temperature. Composites with electrical conductivities in the range of 5–14 S/cm, tensile strengths in the range of 10–17 MPa, and elongations at break point larger than 200% were obtained. The conductivities of the composites prepared with the short fibers were by two orders of magnitude smaller than those prepared with medium-size fibers. © 1994 John Wiley & Sons, Inc.  相似文献   

15.
A new class of core–shell adsorbents has been created by electrospun metal–organic framework (MOF) particles embedded in polymer nanofibers, which have provided many unique properties compared to the existing MOF coating technologies. For the first time, we demonstrate the improved adsorption selectivity of CO2 over N2 using electrospun polymer/ZIF-8 adsorbents in experiments. Furthermore, an analytical model based on the assumption that the diffusivity in core is 10 times higher than that in shell is developed to describe the theory of improved selectivity for core–shell adsorbents that is validated against a more accurate finite element model developed in COMSOL. Our model shows three regimes including exclusive shell uptake, linear core uptake, and asymptotic core uptake. These regimes are related to material properties and uptake times, which could be used as design criteria to balance core stability, maximum selectivity, and maximum uptake. An advanced HAADF STEM tomography (Movie S1 ) shows that the shell thickness in the case of polymer/ZIF-8 is on the order of 10 nm, allowing the regime of maximum selectivity to be realized. Kinetically limited adsorption tests at 45°C demonstrate that these composite fibers can perform in a regime of selectivity and uptake for the separation of CO2 and N2 that is unobtainable by either the MOF or fiber independently, showing a great potential for postcombustion CO2 capture.  相似文献   

16.
The nine independent stiffness constants of injection-molded tensile bars of poly(phenylene sulfide) reinforced with 30 and 40% by weight of carbon or glass fibers have been measured by ultrasonic techniques. The thermal conductivities along the three principal directions of these thermoplastic composites have also been determined by the laser-flash radiometry method. The elastic moduli (tensile and shear) and thermal conductivity increase with increasing fiber volume fraction, vf, with the tensile modulus and thermal conductivity along the mold flow direction showing the greatest change. For a composite, containing 40 weight % of carbon fibers, the Young's modulus and thermal conductivity along this direction exceed those of the polymer matrix by a factor of 8. Using the known values of vf and the observed aspect ratio and orientation factor of the fibers, the elastic moduli and thermal conductivity have been calculated on the basis of the laminate theory. The agreement between theoretical predictions and experimental data is better than 10% on the average.  相似文献   

17.
Glass woven fabric/polypropylene laminates have been studied given their outstanding performance/cost ratio. Their flexural properties, mainly influenced by the adhesion between matrix and reinforcing fibers, have been investigated for systems containing maleated polypropylene (PP‐g‐MA) amounts ranging from 0% to 10% by weight. Results have shown that the presence of the compatibilizer improves both flexural modulus and strength, achieving plateau values approximately for 5 and 2 wt% of PP‐g‐MA, respectively. On the contrary, an inverse proportion between the compatibilizer content and the energy dissipated at perforation emerged from low velocity impact tests. The different dependence can be related to the failure mechanisms occurring at the fiber/matrix interface. These mechanisms are able to dissipate large amounts of energy through friction phenomena, and are pronounced when the fiber/matrix adhesion is weak. Pull‐out of fibers from the matrix has been detected, in particular, in systems containing low contents of compatibilizer and evidenced by the morphological analysis of fracture surfaces after failure. The large amount of energy dissipation allowed by the relative motion of fibers and matrix occurred before fiber breakage, as confirmed by the evaluation of the laminates ductility index. POLYM. COMPOS., 37:2452–2459, 2016. © 2015 Society of Plastics Engineers  相似文献   

18.
We have developed defect‐free asymmetric hexafluoro propane diandydride (6FDA) durene polyimide (6FDA‐durene) hollow fibers with a selectivity of 4.2 for O2/N2 and a permeance of 33.1 ×10?6 cm3 (STP)/cm2‐s‐cmHg for O2. These fibers were spun from a high viscosity in situ imidization dope consisting of 14.7% 6FDA‐durene in a NMP solvent and the inherent viscosities (IV) of this 6FDA‐durene polymer was 0.84 dL/g. Low IV dopes cannot produce defect‐free hollow fibers, indicating a 6FDA‐durene spinning dope with a viscosity in the region of chain entanglement seems to be essential to yield hollow fibers with minimum defects. The effects of spinning parameters such as shear rates within a spinneret and bore fluids as well as air gap on gas separation performance were investigated. Experimental data demonstrate that hollow fibers spun with NMP/H2O as the bore liquid have higher permeances and selectivities than those spun with glycerol as the bore liquid because the former has a relatively looser inner skin structure than the latter. In addition, the selectivity of hollow fibers spun with NMP/H2O as the bore liquid changes moderately with shear rate, while the selectivity of hollow fibers spun with glycerol are less sensitive to the change of shear rate. These distinct behaviors are mainly attributed to the different morphologies generated by different bore fluids. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 2166–2173, 2001  相似文献   

19.
A creative method for fabricating environmentally-benign multifunctional wool fibers was established and reported. Through coating the wool fibers with ɛ-polylysine, the surface morphology and biochemical properties of the fibers were altered, enhancing their antimicrobial, hygroscopic and finished properties. The process of ɛ-polylysine coating was dependent on the solution environment, which influenced the electrostatic interactions between ɛ-polylysine molecules and wool fibers. The results showed that a maximum ɛ-polylysine coating (23.60 mg/g) on the surface of wool fibers was reached when wool fibers were soaked at 50 °C for 2 h in the solution with 10% on weight of fabric (owf) ɛ-polylysine and pH 8.0. The coated wool fiber showed promising antimicrobial rates of 96.98% and 97.93% against Escherichia coli and Micrococcus luteus, respectively. The wool fiber coated with the ɛ-polylysine was more hydrophilic than the uncoated wool fabrics. The functional wool fibers after water scrubbing for two times still have good antibacterial efficiency against Escherichia coli and Micrococcus luteus, and antimicrobial rates were 96.77% and 97.33%, respectively. This study shows that wool fibers modified by the nontoxic ɛ-polylysine have a great potential to be used in constructing multifunctional textiles.  相似文献   

20.
With the rising cost of petroleum‐based fibers, the utilization of plant fibers in the manufacture of polymer–matrix composites is gaining importance worldwide. The scope of this study was to examine the perspective of the use of pineapple leaf fibers (PALFs) as reinforcements for polypropylene (PP). These fibers are environmentally friendly, low‐cost byproducts of pineapple cultivation and are readily available in the northeastern region of India. Here, both untreated and treated pineapple fibers were used. Maleic anhydride grafted polypropylene (MA‐g‐PP) was used as a compatibilizing agent. The polymer matrix of PP was used to prepare composite specimens with different volume fractions (5–20%) of fibers by the addition of 5% of MA‐g‐PP. These specimens were tested for their mechanical properties, and additional assessments were made via observations by scanning electron microscopy, thermogravimetric analysis, and IR spectroscopy. Increase in the impact behavior, flexural properties, and tensile moduli of the composites were noticed, and these were more appreciable in the treated fibers mixed with MA‐g‐PP. PALF in 10 vol % in PP mixed with MA‐g‐PP was the optimum and recommended composition, where the flexural properties were the maximum. The impact strength and the tensile modulus were also considerably high. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号