首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tensile properties of unidirectional Celion 6000 graphite/PMR 15 polyimide composites prepared by hot molding and cold molding processes were measured at room temperature and 316°C, the upper use temperature of the polyimide resin, at both 45 and 90° to the fiber axis. The resulting fractures were characterized by scanning electron microscopy and materialographic techniques. Variation in tensile properties with processing history occurred in the elastic modulus and strain to failure for specimens loaded at 90° at 316°C, and in the fracture stress, and hence the in-plane shear stress, for those loaded at 45° at room temperature. Significant plastic deformation was observed in the 45° orientation at 316°C for material produced by both processing methods. In general, fracture occurred by both failure within the matrix and at the fiber-matrix interface; the degree of interfacial failure increased with temperature. Secondary cracking below the primary fracture surface also was observed.  相似文献   

2.
Studies were performed to determine the toughness characteristics of composites prepared from modified addition-type polyimides, using Celion 6000 graphite fiber as the reinforcement. The polyimides were prepared from aromatic diamines containing flexibilizing ether connecting groups. The composite flexural and short beam shear strengths were determined at room temperature and elevated temperatures. Composite toughness was evaluated using 10° off axis tensile tests and double cantilever beam fracture tests at room temperature. The effects of the flexibilized resin structure on composite mechanical properties, toughness characteristics, and thermo-oxidative stability are discussed.  相似文献   

3.
Silicone resins have been used as binders for ceramic frit coatings and can withstand temperatures of 650°C to 1260°C. Conceptually, silicone resins can potentially be used as matrices for high temperature fiber‐reinforced composites. The mechanical and thermal properties of a commercially available silicone resin, Dow Corning® 6‐2230, were characterized. Neat 6‐2230 resin was found to have inferior room temperature mechanical properties such as flexural, tensile and fracture properties when compared to epoxy. The room temperature flexural properties and short beam shear strength of the silicone/glass composites were also found to be lower than those of epoxy/glass composite with similar glass content. However, the silicone resin had better elevated temperature properties. At an elevated temperature of 316°C, the retentions of flexural modulus and strength were 80% and 40% respectively of room temperature values; these were superior to those of phenolic/glass. Unlike the carbon‐based resins, the drop in flexural properties of the silicon/glass laminates with temperature leveled off with increase in temperature beyond 250°C. The resin weight loss at 316°C in 100 cm3/min of flowing air was small compared to other carbon‐based resins such as PMR‐15 and LaRC TPI. Only Avimid‐N appeared comparable to Dow Corning® 6‐2230.  相似文献   

4.
A series of graphite fiber/PMR-15 polyimide composites, isothermally aged at 316°C in flowing air (100 cc/min) for time periods up to 2000 h, were investigated for mechanical property changes, fiber/resin interface changes, overall dimensional changes, and weight loss. The mechanism of the degradation process is suggested based on shear and flexural property measurements at room temperature and 316°C, optical micrographs of composite cross sections, and SEM analysis of fractured surfaces. The fiber materials investigated in composite form were Celion 6000 unsized and epoxy sized. G40-700 unsized and epoxy sized, and T40R and IM6 both unsized.  相似文献   

5.
The paper presents manufacture of C/C-SiC composite materials by wet filament winding of C fibers with a water-based phenolic resin with subsequent curing via autoclave as well as pyrolysis and liquid silicon infiltration (LSI). Almost dense C/C-SiC composite materials with different winding angles ranging from ±15° to ±75° could be obtained with porosities lower than 3% and densities in the range of 2 g/cm3. Thermomechanical characterization via tensile testing at room temperature and at 1300°C revealed higher tensile strength at elevated temperature than at room temperature. Thus, C/C-SiC material obtained by wet filament winding and LSI-processing has excellent high-temperature strength for high-temperature applications. Crack patterns during pyrolysis, microstructure after siliconization, and tensile strength strongly depend on the fiber/matrix interface strength and winding angle. Moreover, calculation tools for composites, such as classical laminate and inverse laminate theory, can be applied for structural evaluation and prediction of mechanical performance of C/C-SiC structures.  相似文献   

6.
The 371°C (700°F) properties of Celion 6000/N-phenylnadimide modified PMR-15 polyimide composites were investigated to determine the feasibility of using these materials at a 371°C (700°F) service temperature. The processing characteristics and physical and mechanical properties of the composite systems are presented. The results of the 371°C thermooxidative stability study suggest that the composite materials can be considered for short-term (at least 100 hours) application at 371°C.  相似文献   

7.
A hot-melt processable copolyimide designated 422 previously synthesized and characterized as an adhesive at NASA Langley Research Center for bonding Ti-6A1-4V has been used to bond Celion 6000/LARC-160 composite. Comparisons are made for the two adherend systems. A bonding cycle was determined for the composite bonding and lap shear specimens were prepared which were thermally exposed in a forced-air oven for up to 5000 h at 204°C. Lap shear strengths (LSSs) were determined at room temperature, 177°C, and 204°C. After thermal exposure to 5000 h at 204°C, room temperature and 177°C LSSs decreased significantly; however, a slight increase was noted for the 204°C test. Initially the LSS values were higher for the bonded Ti-6AI-4V than for the bonded composite; however, the LSS decreased dramatically between 5000 and 10 000 h of 204°C thermal exposure. Longer periods of thermal exposure up to 20 000 h resulted in further decreases in LSSs. Although the bonded composite retained useful strengths ( > 11.1 MPa) for exposures up to 5000 h, based on the poor results of the bonded Ti-6A1-4V beyond 5000 h, the 422 adhesive bonded composites would most likely also produce poor strengths beyond 5000 h exposure. Adhesive bonded composite lap shear specimens exposed to boiling water for 72 h exhibited greatly reduced strengths at all test temperatures. The percent retained after water boil for each test temperature was essentially the same for both systems.  相似文献   

8.
Stress concentration effects and strengths of bonded and bolted butt joints were investigated for a glass fabric polybenzimidazole lalminate at room temperatuer and 700°F for a gloass fabric phenolic laminate at room temperature and 500°F. Specimen configurations included: (1) standard tensile specimen, (2) stress concentration specimen, (3) bolted double shear butt joint, (4) bolted single shear butt joint, (5) bonded double shear butt joint and (6) bonded single shear butt joint. Both polybenzimidazole and phenolic laminates exhibited high room temperature tensile strengths and little degradation of that strength occured as a result of elevated temperature exposure. However, low joint effencies (22 to 32%) were obtained for bolted butt joint specimens. Although bonded joints exhibited higher efficiencies, they suffered from a thermal expansion mismatch between the plastic laminate and the Inconel butt plates.  相似文献   

9.
Studies were performed to synthesize new ether modified, flexibilized aromatic diamine hardeners for curing epoxy resins. The effect of moisture absorption on the glass transition temperatures of a tetraglycidyl epoxy, MY 720, cured with flexibilized hardeners and a conventional aromatic diamine was studied. Unidirectional composites, using epoxy-sized Celion 6000 graphite fiber as the reinforcement, were fabricated. The room temperature and 300°F mechanical properties of the composites, before and after moisture exposure, were determined. The Mode I interlaminar fracture toughness of the composites was characterized, using a double cantilever beam technique to calculate the critical strain energy release rate, GIC.  相似文献   

10.
The failure mechanisms of Oxide-Oxide ceramic matrix composites AS-N610 were studied at both room temperature and high temperature using tensile and fatigue tests with and without lateral and laminar notches. The unnotched coupons had an average tensile strength of 423 MPa with elastic modulus of 97 GPa at room temperature showing a perfect elastic behaviour whereas the laminar notched samples shown similar strength of 425 MPa with elastic modulus (98 GPa) revealing pseudo-ductile behaviour. A reduction in tensile strength of the oxide ceramic matrix composites was observed at high temperatures. Thermal shock experiments revealed that the retained strength of the samples quenched from 1100 °C deteriorated by ~10 % (395 ± 15 MPa). In all samples, fracture origin was observed on the mid-plane showing a higher degree of fiber pull-out, delamination and pseudo ductile behaviour. Finite element analysis confirmed higher stress concentration on the areas of failures.  相似文献   

11.
HTPB推进剂的低温力学性能   总被引:3,自引:0,他引:3  
通过低温和低温恢复常温单轴拉伸试验,考察了低温条件下HTPB推进剂力学性能的变化情况,用SEM扫描电镜观察了推进剂拉伸断面形貌,分析了所得HTPB推进剂的拉伸应力-应变曲线和力学性能特性。结果表明,在低温拉伸条件下,HTPB推进剂主要表现为基体撕裂和颗粒脆断,而在低温恢复常温拉伸条件下,主要以"脱湿"破坏为主。推进剂的低温拉伸曲线具有明显的屈服现象发生,说明推进剂的屈服现象与低温有关。推进剂在低温和低温恢复常温条件下的最大抗拉强度、弹性模量和延伸率等力学性能呈现出不同的变化规律。  相似文献   

12.
Polymerization of monomeric reactants (PMR) monomer solutions and carbon cloth prepregs of PMR II‐50 and VCAP‐75 were prepared using both the traditional limited shelf life methanol based PMR approach and a novel extended shelf life isopropanol based PMR approach. The methyl ester and isopropyl ester based PMR monomer solutions and PMR prepregs were aged for up to 4 years at freezer and room temperatures. The aging products formed were monitored using high pressure liquid chromatography (HPLC). The composite processing flow characteristics and volatile contents of the aged prepregs were correlated versus room temperature storage time. Composite processing cycles were developed and six‐ply cloth laminates were fabricated with prepregs after various extended room temperature storage times. The composites were then evaluated for glass transition temperature (Tg), thermal decomposition temperature (Td), initial flexural strength (FS), and modulus (FM), long term (1000 h at 316°C) thermal oxidative stability (TOS), and retention of FS and FM after 1000 h aging at 316°C. The results for each ester system were comparable. Freezer storage was found to prevent the formation of aging products for both ester systems. Room temperature storage of the novel isopropyl ester system increased PMR monomer solution and PMR prepreg shelf life by at least an order of magnitude, while maintaining composite thermal and mechanical properties. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3549–3564, 2006  相似文献   

13.
PMR polyimide resin was prepared from 4,4′-methylenedianiline (MDA), the dimethyl ester of 3,3′,4,4′- benzophenonetetracarboxylic acid (BTDE) and the monomethyl ester of 5-norbornene-2,3-dicarboxylic acid (NE). The NE group serves as a chain terminator and crosslinking site. PMR/Celion 6000 composites were fabricated from resins having varying NE concentrations using two molding processes, and the laminates characterized in forced torsion. Glass transition temperatures (Tg) of 360–390°C were observed in the crosslinked resins, as compared with the literature value of 284°C reported for the uncrosslinked systemTg did not decrease with decreasing NE concentrations over the range from 2.0 to 1.25 moles. Stoichiometry, within the range studied, showed little influence on shear properties; however, a 25% variation in matrix shear modulus with processing was observed. The G12 values determined in forced torsion were in excellent agreement with those reported from tensile tests of ±45° laminates. A branching and possible secondary crosslink mechanism is proposed based on dynamic mechanical behavior and infrared spectra of the composites.  相似文献   

14.
Temperature-frequency dependence of α, β, and γ transitions was determined using a Rheometrics dynamic spectrometer on a series of unidirectional Celion 6000/N-phenylnadimide (PN) modified PMR polyimide composites. The objective was to see if any correlations exist between crosslinked network structure and dynamic mechanical properties. Variation in crosslinked network structures was achieved by altering the polyimide formulation through addition of various quantities of PN into the standard PMR-15 composition. As a control, PMR-15 composite system exhibited well-defined α, β, and γ transitions in the regions of 360, 100, and −120°C, respectively. Their activation energies were estimated to be 232, 60, and 14 kcal/mole, respectively. Increasing the amount of PN concentration caused (a) lowering of the activation energies of the three relaxations, (b) a decrease of the glass transition temperature, and (c) increasing intensities of the three damping peaks, compared to the control PMR-15 counterpart. These dynamic mechanical responses were in agreement with formation of a more flexible co-polymer from PN and PMR-15 prepolymer.  相似文献   

15.
The creep behavior of PMR‐15 neat resin, a polyimide thermoset polymer, aged in air and in argon environments at 288°C for up to 1000 h was evaluated. Creep tests were performed at 288°C at creep stress levels of 10 and 20 MPa. Creep periods of at least 25‐h in duration were followed by 50‐h periods of recovery at zero stress. Prior isothermal aging increased the elastic modulus and significantly decreased the polymer's capacity to accumulate creep strain. The aging environment had little influence on creep and recovery behaviors. However, aging in air dramatically degraded the tensile strength of the material. Dynamic mechanical analysis revealed an increase in the glass transition temperature from ∼330°C to ∼336°C after 1000 h in argon or in air at 288°C. The rise in the glass transition temperature with aging time is attributed to an increase in the crosslink density of the PMR‐15 polyimide. Increase in the crosslink density due to aging in both air and argon environments is likely behind the changes in the elastic modulus and the decreased capacity for inelastic straining. A visibly damaged surface layer of ∼0.16 mm thickness was observed in specimens aged in air for 1000 h. Results indicate that the unoxidized core material governs the overall mechanical response, whereas the oxidized surface layer causes a decrease in tensile strength by acting as a crack initiation site and promoting early failures. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
A new test method was proposed and applied for studying the biaxial tensile behaviors of hydroxyl-terminated polybutadiene (HTPB) propellant at high strain rates. The biaxial tensile stress responses of the propellant at room temperature and at different strain rates (0.40–85.71 s?1) were obtained through the use of biaxial tensile strip samples, a new designed aluminum apparatus and a uniaxial Instron testing machine. A high-speed camera and scanning electron microscop (SEM) were employed to observe the biaxial tensile deformation and the damage of HTPB propellant under the test conditions. The results indicated that strain rate could remarkably influence the biaxial tensile behaviors of HTPB propellant. The effect of strain rate on the characteristics of stress–strain curves, mechanical properties and fracture mechanisms was consistent with that in uniaxial tension. However, the biaxial weakening of HTPB propellant was obvious. The strain at biaxial maximum tensile stress was between 10 and 30 % lower than that at the corresponding uniaxial case. Finally, the correlations between the fracture mechanisms and the mechanical properties of HTPB propellant, stress state and the damage of HTPB propellant were discussed. The damage of the propellant under the biaxial tensile test was less serious than that under uniaxial tension at the same strain rate. In addition, continuously increasing strain rate could change the fracture mechanism of the propellant under the biaxial and uniaxial tensile tests. In this investigation, the dominating fracture mechanism of HTPB propellant changed from the dewetting and matrix tearing at lower strain rate to the particles fracture at higher strain rate.  相似文献   

17.
Studies were performed to achieve lower-curing temperature PMR (polymerization of monomer reactants) polyimides. Partial substitution of a p-aminostyrene end-cap for the monomethyl ester of 5-norbornene-2,3-dicarboxylic acid lowered the final cure temperature of typical PMR resins from 600 to 500°F. The weight-loss characteristics of neat resins and graphite fiber composites prepared by using the mixed end-cap approach were determined at 600°F. The room temperature and short-term elevated temperature mechanical properties of the composites at 550°F and 600°F were determined. The mechanical-property-retention characteristics of the composites at 550°F and 600°F are also discussed.  相似文献   

18.
The mechanical response was studied for dense laminates containing layers of ZrB2 (~145 µm) and graphite—10 vol% ZrB2 (~20 µm). Individual layers were formulated by mixing starting powders with thermoplastic polymers and pressing into sheets. Laminates were produced by stacking and warm pressing the sheets, debinding, and hot pressing at 2050°C, 32 MPa, in Ar. The laminates were fractured at temperatures up to 2000°C in Ar. Laminates exhibited room temperature flexure strength of 260 MPa, increasing to 300 MPa at 1600°C, and then decreasing to 160 MPa at 2000°C. Inelastic work of fracture was 0.6 kJ/m2 at room temperature, reached a maximum of 1.3 kJ/m2 at 1400°C, and reverted to linear elastic failure at 2000°C. During fracture, cracks were deflected at the interfaces between the strong ZrB2 layers and the relatively weak C-ZrB2 layers, which led to an increased inelastic work of fracture by more than an order of magnitude compared to conventional ZrB2 ceramics. This study demonstrated that laminate architectures are a promising approach for improving the damage tolerance of ZrB2-based ceramics at elevated temperatures.  相似文献   

19.
A study was made on the stress relaxation behavior at 25°C of poly(methyl methacrylate) in uniaxial tension as a function of physical aging at both room temperature and 60°C. Test specimens were compression molded at 165°C, then quenched to room temperature and allowed to age for up to 30 days prior to testing. Stress relaxation curves measured after different aging times could be superposed to a single master curve for each aging temperature. Superposition was achieved by applying vertical and horizontal shifts. Hence, the shape of the response curves was not changed by aging. This is in accordance with observations made by Struik for tensile creep curves. Volume changes as a function of physical aging were also determined. Simple exponential relationships were observed between volume and both horizontal and vertical shifts. The horizontal shift implies a shift in the effective time scale caused by a change in free volume. The vertical shifts could be correlated with changes in Young's modulus caused by a change in density. For the range of aging studied, the response time scale varied over nearly two decades of log-time. For the same conditions modules varied by 30 percent.  相似文献   

20.
This study examines for the first time how matrix crosslinking affects the composite physical and mechanical properties of a graphite fiber reinforced PMR polyimide composite during long-term isothermal aging. Unidirectional composite specimens of Celion 6000/PMR-P1 were isothermally exposed at 288°C in air for various time periods up to 5000 h. The matrix crosslink densities were estimated from the kinetic theory of rubber elasticity and shifts in the glass transition temperatures (Tgs). The Tg, coefficient of thermal expansion, density, weight loss, moisture absorption, and elevated temperature flexural and interlaminar shear properties were also determined. Several linear relationships were found between the matrix crosslink density and composite physical and mechanical properties. The Tg, initial weight loss and density, and elevated temperature interlaminar shear strength increase with an increase in crosslink density. Conversely, the initial moisture absorption and coefficient of thermal expansion decrease with increasing crosslink density. As expected, the elevated temperature flexural strength and modulus show no direct correlations with crosslink density. Further, after achieving the highest matrix crosslink density, several of the composite properties begin to decrease rapidly. These findings suggest that time-temperature dependent nature of attaining the maximum matrix crosslinking is closely linked to the onset of the composite property degradation. Though much more work is needed, a fundamental understanding of the relationships between matrix crosslinking and composite physical and mechanical property can provide a scientific basis for the prediction of the extent of composite service life not only for PMR polyimides but also for other thermosetting matrix resins, such as epoxies and bismaleimides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号