首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
大长径比反应器搅拌轴磁流体密封设计与实验研究   总被引:1,自引:0,他引:1  
潘玉娴  芮延年  沈铭 《机械设计》2004,21(Z1):69-70
大长径比反应器搅拌轴密封可靠性问题一直是从事密封工作者探索的问题之一.本文利用磁流体密封原理,去解决因轴旋转摆动带来的密封困难问题.通过研究构建了大长径比搅拌轴磁流体密封动力学模型,设计了磁流体密封的结构,并通过实验进行了更为深入的研究,获得了较为满意的结果,为该技术的实际应用奠定了理论和实验基础.  相似文献   

2.
张健  芮延年  陈洁 《机械设计》2006,23(7):60-62
高速大长径比压力反应釜搅拌轴密封性能问题一直是设计者与使用者研究的难题。该文根据磁性流体密封原理和微纳米特性,研究设计了一种能更好地满足高速大长径比压力反应釜搅拌轴密封要求的新型微纳米磁性流体密封结构,并通过实验对其相关参数进行了优化设计。实验研究证明,该方法为解决高速大长径比压力反应釜搅拌轴密封问题探索了一种新途径。  相似文献   

3.
为了更好地解决高速大长径比搅拌轴密封可靠性的问题,根据微纳米磁性流体密封原理,设计了搅拌轴微纳米磁性流体密封结构,可解决因轴高速旋转摆动带来的密封难题.通过理论计算和实验研究表明所设计的高速大长径比搅拌轴微纳米磁性流体密封结构是可靠的.  相似文献   

4.
压力反应釜搅拌轴动态密封技术问题一直是人们研究的难题之一.文中采用机械密封+磁流体密封复合技术来解决其动态密封难题,重点研究工作压力和转轴偏摆情况下的磁流体动态密封技术.通过研究,首先构建了磁流密封体动力学模型,探讨了磁流体密封中磁场计算方法和磁流体齿形密封结构参数,并进行了实例设计.在理论研究的基础上,通过实验对其密封效果的影响进行了研究,实验研究证实该技术方法可以较好地解决压力反应釜搅拌器转轴动态密封问题.  相似文献   

5.
潘钰娴  芮延年  沈铭 《机械制造》2005,43(12):44-46
为了更好地解决大长径比搅拌轴密封可靠性的问题,根据磁性流体密封原理,研究设计了微纳米磁性流体密封结构,并进行了实验研究,证明了该方法对大长径比搅拌轴密封结构的可行性、可靠性和优越性。  相似文献   

6.
为解决水轮机主轴的密封问题,引入了磁流体作为密封材料,通过实验分析了水环境下影响磁流体密封承压能力的几种因素.结果表明:磁化强度越高,磁流体密封承压能力越高,但过高的磁化强度会导致磁流体粘度过大,造成轴转动时阻力过大;磁流体密封的承压能力随着磁场强度的提高而增大,但当外加磁场强度超过磁极的饱和磁化强度时,承压能力下降;磁流体密封的承压能力随密封间隙、温度和转速增加而下降,随磁流体量的增加和磁极级数的增多而增大,但当磁流体量超过一定的临界值和级数超过五级后,磁流体密封的承压能力保持在某一恒定值.  相似文献   

7.
根据纳米磁性流体密封原理,设计了搅拌轴纳米磁性流体密封结构,对搅拌轴长径比、转速、励磁电流大小与密封性能关系进行理论计算和实验研究。理论计算表明所设计的搅拌轴纳米磁性流体密封结构是可靠的。实验结果表明:当磁性流体初始密封压差比较大时,随轴长径比的增大,密封压差迅速减小,而当初始密封压差较小时,轴长径比的增大对密封压差的影响较小;当轴的转速较低时,轴的转速对磁性流体密封性能影响不大;励磁电流大小与密封性能成正比,但随着电流的进一步增加,密封压差的增加变得不明显。  相似文献   

8.
根据磁学理论进行了磁回路的磁系统设计,在此基础上研制了磁流体密封的实验装置,同时进行了速度和密封能力关系的实验研究,特别考察了小轴径在低旋转速度和静止时磁流体密封能力的变化,试验结果表明,随着轴的转速的提高,密封能力下降,而且速度越高,理论和实验的背离现象越严重;小轴径低旋转速度时,对磁流体密封的密封耐压能力基本无影响。  相似文献   

9.
高压消防水泵动态密封泄漏问题一直困扰着制造商和用户.针对高压消防水泵密封泄漏问题,决定采用磁流体与机械动静态复合密封技术来解决.通过对磁流体密封原理的研究,构建了磁流体密封动力学模型,并对密封压力、磁场以及磁流体齿形密封结构等关键技术参数进行了较为深入的探讨.研究设计了磁流体与机械动静态复合密封结构,并通过实验验证了该...  相似文献   

10.
磁流体密封中影响热损耗的因素分析   总被引:1,自引:0,他引:1  
磁流体作为一种性能优良的软磁性液体,近年来广泛应用于机械密封中。当其运用于高速旋转的轴密封时,由于磁流体本身的性质,在高速旋转个工况下易产生较大量的摩擦热,导致其密封性能下降,甚至失效。通过实验计算,分析了在高速旋转的工况下,磁流体粘度、温度等的变化,及其对密封的影响。  相似文献   

11.
Magnetic fluid rotary vacuum seals have been shown to be effective in machinery operating in a vacuum chamber. Such seals have the advantages of simple design, zero leakage at almost any rotation speed, and low friction. They have no wear and require no maintenance. This paper presents results obtained from experimental investigations of the operation of magnetic fluid rotary seals under vacuum conditions. The paper discusses the test apparatus and the seals used, the test conditions, and the procedure. The experimental results show characteristic phenomena observed in magnetic fluid rotary vacuum seals, including changes in vacuum pressure, temperature, and frictional moment dependent on the rotation speed of the shaft, number of sealing stages, height of the sealing gap, and mean magnetic flux density in the sealing gap.  相似文献   

12.
Compared with traditional mechanical seals,magnetic fluid seals have unique characters of high airtightness,minimal friction torque requirements,pollution-free and long life-span,widely used in vacuum robots.With the rapid development of Integrate Circuit(IC),there is a stringent requirement for sealing wafer-handling robots when working in a vacuum environment.The parameters of magnetic fluid seals structure is very important in the vacuum robot design.This paper gives a magnetic fluid seal device for the robot.Firstly,the seal differential pressure formulas of magnetic fluid seal are deduced according to the theory of ferrohydrodynamics,which indicate that the magnetic field gradient in the sealing gap determines the seal capacity of magnetic fluid seal.Secondly,the magnetic analysis model of twin-shaft magnetic fluid seals structure is established.By analyzing the magnetic field distribution of dual magnetic fluid seal,the optimal value ranges of important parameters,including parameters of the permanent magnetic ring,the magnetic pole tooth,the outer shaft,the outer shaft sleeve and the axial relative position of two permanent magnetic rings,which affect the seal differential pressure,are obtained.A wafer-handling robot equipped with coaxial twin-shaft magnetic fluid rotary seals and bellows seal is devised and an optimized twin-shaft magnetic fluid seals experimental platform is built.Test result shows that when the speed of the two rotational shafts ranges from 0-500 r/min,the maximum burst pressure is about 0.24 MPa.Magnetic fluid rotary seals can provide satisfactory performance in the application of wafer-handling robot.The proposed coaxial twin-shaft magnetic fluid rotary seal provides the instruction to design high-speed vacuum robot.  相似文献   

13.
流体密封技术   总被引:10,自引:1,他引:10  
流体密封作为一门新兴的工程技术学科正越来越受到各行业的关注。本文对流体密封的定义、作用、重要性、分类、涉及的主要学科、主要应用领域以及最新进展作一简单介绍,并阐述了高速透平压缩机轴封经历的四个发展阶段:迷宫密封、浮环密封、机械密封、干气密封。干气密封是最先进的轴端密封形式,已在炼油、化工等行业高速透平压缩机上得到越来越广泛的应用。  相似文献   

14.
针对捏合机上普遍采用的填料密封及机械密封的不足,设计了一种磁流体密封装置。试验结果表明,磁流体密封装置应用在大轴径、高转速的捏合机上,密封性能良好,且温升较小。  相似文献   

15.
水轮机主轴磁流体密封装置间隙流场因工况和物理场的复杂性一直是磁流体密封研究难点。为研究水轮机主轴磁流体密封装置间隙内磁流体流动特性,建立主轴密封间隙流场数值模型并通过试验进行了验证;通过数值计算研究密封间隙、极齿宽度、极齿高度和极齿槽宽度对磁流体流动的影响。结果表明:极齿附近磁流体不受结构参数影响,基本保持不动;当密封间隙小于0.6 mm时,间隙内磁流体基本不发生流动,当密封间隙超过该值后,极齿槽和永磁体附近磁流体随间隙增加流动加剧,速度线性递增;极齿槽和永磁体附近磁流体随极齿宽度递增流动减弱,速度先线性递减,在3.0~3.5 mm极齿宽度时急剧减小,最后趋于稳定;随着极齿高度和极齿槽宽度逐渐增加,极齿槽和永磁体附近磁流体流动会减弱,极齿槽附近磁流体速度在极齿高度为1.0~3.5 mm和极齿槽宽为3.0~12 mm速度急剧减小,最后趋于稳定,而永磁体附近磁流体速度一直呈线性递减。  相似文献   

16.
文中通过对磁性液体密封耐压传递过程的理论分析,提出了三种观点,并在实验的基础上对此三种观点进行了论证,总结了磁性液体密封的耐压传递过程。  相似文献   

17.
磁流体密封技术及在反应釜中的应用   总被引:1,自引:1,他引:0  
通过对磁流体及磁流体密封原理的分析与研究,给出了结构设计方法,对其在反应釜中的应用进行了分析。  相似文献   

18.
高温会降低磁流体饱和磁化强度,造成永磁铁退磁,影响磁流体密封装置的可靠性及稳定性。为探讨磁流体密封装置传热特性,以大轴径离心压缩机磁流体密封为研究对象,同时考虑磁流体摩擦热和轴承摩擦热对磁流体密封装置传热特性的影响,利用有限元数值计算与磁流体、轴承摩擦功耗理论分析相结合的方法,研究磁流体密封装置温度分布规律,分析齿宽、密封间隙和转速对永磁铁和磁流体最高稳态温度的影响,并确定相关工况所需冷却液质量流率。结果表明:由于轴径尺寸较大,表面线速度高,磁流体黏性摩擦热及轴承摩擦热对密封装置传热特性有显著影响,在无冷却工况下,密封装置最高温度超过磁流体和永磁铁的极限使用温度,需通过强制对流换热的方式进行降温处理;永磁铁及磁流体最高稳态温度随着齿宽增加而升高,随着密封间隙增加而减小;随着转速的增加,永磁铁及磁流体最高稳态温度升高,且转速越大,相同转速梯度差之间的温度差越大。  相似文献   

19.
磁性流体水密封的实验研究   总被引:2,自引:1,他引:2  
本文分析了磁性流体水密封的特殊问题,实验观察了不同磁性流体在水中的状态,根据疏水性质判定了油基磁性流体密封水的可行性。对两种密封装置进行了实验,高压密封装置的密封压差达到1.6MPa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号