首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
在对基于最大重叠离散小波包变换(Maximal overlap discrete wavelet packet transform,简称MODWPT)的Hilbert谱方法进行介绍的基础上,将基于MODWPT的Hilbert谱应用于齿轮故障诊断当中。采用MOWDWPT可将多分量的复杂信号分解为若干个瞬时频率和瞬时幅值具有经典物理意义的单分量之和,然后求出各个单分量信号的瞬时频率和瞬时幅值,再进行组合便可以得到原始复杂信号完整的时频分布。对具有裂纹和断齿的齿轮故障振动信号的分析结果表明,基于MODWPT的Hilbert谱可以有效地提取齿轮振动信号的故障特征。  相似文献   

2.
基于高斯线调频小波变换能量谱的齿轮故障诊断   总被引:2,自引:0,他引:2  
提出了一种基于高斯线调频小波变换诊断齿轮故障的新方法。线调频小波变换是信号的时间-频率-尺度变换,具有比小波变换及其它时频分析方法更强的非平稳信号分析功能。利用高斯线调频小波变换作齿轮振动信号的能量谱估计,可提取调制边频带结构,识别故障模式。试验结果表明这种方法可有效应用于齿轮局部故障诊断中。  相似文献   

3.
齿轮故障振动信号往往表现为非线性非平稳特性,并且早期故障振动信号往往包含较强的背景噪声,不利于故障特征的提取。针对该问题,提出了基于双树复小波变换和局部投影算法的齿轮故障诊断方法。首先,对故障信号进行双树复小波变换,得到不同尺度下的小波系数和最后一层的尺度系数,并计算各层小波系数的模与相角。然后,选择模周期性较强的小波系数或尺度系数进行局部投影算法处理,得到周期性增强的系数的模,并选择合适的阈值进行软阈值处理。最后,利用处理后的系数进行双树复小波重构,从而提取出齿轮故障特征信号,进行希尔伯特包络解调分析便能准确地得到故障特征频率。仿真信号和工程应用表明,该方法能够有效地提取齿轮故障特征信息,提供了一种齿轮故障特征提取的新方法。  相似文献   

4.
基于重分配配算法和奇异值分解的多小波脊线提取   总被引:2,自引:1,他引:1       下载免费PDF全文
小波脊线能较好地揭示信号瞬时频率变化情况。针对目前多小波脊线提取方法存在的问题,提出了一种多小波脊线提取的新方法。该法通过连续小波变换得到小波尺度谱后,利用重分配算法对其进行处理,再通过奇异值分解降噪,然后通过求小波系数的模极大值点来提取各分量的小波脊线。与其它方法相比,该法更加适合于某些分量具有较大载波频率的低信噪比多分量AM-FM信号的小波脊线提取。在齿轮故障特征提取中的应用结果也验证了所提方法的有效性和实用性。  相似文献   

5.
频率切片小波变换是一种有力的时频分析方法,但在强背景噪声条件下其故障特征识别能力不足,故提出奇异值分解结合频率切片小波的故障特征提取方法。首先利用原始信号构造Hankel矩阵,根据奇异值差分谱单边极大值原则确定阶次并进行降噪处理,继而利用频率切片小波对降噪信号进行全频分析,确定信号分量分布区间之后,对能量集中的信号进行频率切片细化分析,用时频图及重构信号提取齿轮故障特征。通过仿真及实测齿轮的点蚀信号分析,表明该方法能够实现齿轮运行状态的准确判别,有一定的工程实际意义。  相似文献   

6.
非线性系统识别的小波方法研究   总被引:1,自引:1,他引:1  
利用小波变换时频分析的特点,用Morlet复小波函数对弱Duffing系统的有阻尼自由振动响应进行小波变换,通过脊线所对应的尺度可以计算出瞬时振动频率,通过脊线上的小波系数可以得到瞬时振幅。由系统的瞬时频率和瞬时振幅与时间的关系以及它们之间的相互关系,由曲线拟合可以得到系统的固有频率、阻尼系数和非线性系数。数值算例证实了此方法的正确性,计算表明非线性系数的识别精度与非线性程度和初始振幅大小有关。  相似文献   

7.
对结构响应信号采用连续可逆的时频变换工具—同步挤压小波变换,能提高时频曲线频率精度,有效地识别出结构的瞬时频率。用Duffing弱非线性系统及两层剪切型建筑模型验证该方法的正确性。设计时变拉索试验,分别对索施加线性与正弦变化拉力,测出结构的加速度响应,用同步挤压复Morlet小波变换算法进行索的瞬时频率识别。数值模拟及试验表明, 同步挤压小波变换能有效识别时变结构及非线性结构的瞬时频率,该方法具有较好的稳定性。  相似文献   

8.
基于复小波变换的结构瞬时频率识别   总被引:6,自引:0,他引:6  
对结构响应信号进行连续复Morlet小波变换,根据小波系数的模极大值提取小波脊线,识别结构的瞬时频率;为降低噪音的影响,采用奇异值分解(SVD)方法进行降噪处理,建立了一种基于连续复小波变换识别时变系统瞬时频率的方法.用一个具有时变刚度的弹簧质量系统的数值算例验证方法的有效性,随后设计了一个时变拉索结构试验,分别对索施加线性和正弦变化的拉力,同时测试结构的冲击响应,运用提出的方法成功地识别了索的瞬时频率.数值与试验结果表明,提出的方法能有效地识别时变结构的瞬时频率,且识别方法具有一定的抗噪性.  相似文献   

9.
为了准确诊断轴承故障并探究故障信号的时变特性,提出了一种基于同步提取变换(Synchroextracting Transform,SET)和经验小波变换(Empirical Wavelet Transform,EWT)的轴承故障诊断方法。对故障信号进行经验小波变换分解,把分解得到的若干个经验模态进行同步提取变换,将所有模态的SET 结果叠加即可得到EWT?SET的时频结果。仿真表明,提出的方法比传统的SET 方法有优势,能够有效解决传统SET 方法在处理瞬时频率较近的模态信号时易出现瞬时频率特征模糊的问题。把所提出的方法应用到不同损伤程度的轴承故障诊断中,实验验证了提出的方法能有效地诊断出轴承故障与损伤程度,能清晰地表示故障信号的时变特征。  相似文献   

10.
变速器故障齿轮振动信号,调幅现象和调频现象同时存在,其频谱中包括啮合频率及其谐波、调制产生的耦合频率。Hilbert变换无法提供足够高的频率分辨率解调低频调制信号,为此提出复调制细化谱分析方法。通过变速器齿轮故障模拟实验,采集齿轮正常、轻微磨损和严重磨损时的稳态振动信号,对其进行Hilbert变换得到信号的包络,对包络信号进行复调制细化谱分析,得到齿轮轴转频基波及其谐波幅值。随着齿轮磨损程度的增加,齿轮轴转频基波及其谐波幅值明显增大,可作为齿轮磨损故障特征参数。  相似文献   

11.
针对故障齿轮振动信号的非平稳特征和包含强烈噪声,很难提取故障特征频率的情况,提出了基于双树复小波和奇异差分谱的故障诊断方法。首先将非平稳的故障振动信号通过双树复小波分解为几个不同频段的分量;由于噪声的影响,从各个分量的频谱中难以准确地得到故障频率。然后对包含故障特征的分量构建Hankel矩阵并进行奇异值分解,求奇异值差分谱曲线,确定奇异值个数进行SVD重构降噪,由此实现对故障特征信息的提取。最后再求希尔伯特包络谱,便能准确地得到故障频率。实验结果和工程应用表明,该方法可以有效地提取齿轮的故障特征信息,验证了方法的可行性和有效性。  相似文献   

12.
离散余弦变换在滚动轴承故障诊断中的应用   总被引:4,自引:0,他引:4  
本文探讨了应用离散余弦变换分析滚动轴承故障的方法,采用小波基将滚动轴承振动信号变换到时间-尺度域,对高频段的小波系数用离散余弦变换进行包络分析。通过对滚动轴承具有外圈缺陷、内圈缺陷的情况下振动信号的分析,说明这种方法可以有效的用于效地用于滚动轴承的故障诊断。  相似文献   

13.
基于小波系数11/2维谱的滚动轴承故障诊断   总被引:2,自引:2,他引:2  
提出了基于小波系数11/2维谱的滚动轴承故障诊断的新方法。小波分析能有效地提取滚动轴承故障引起的突变振动信号,11/2维谱保留了滚动轴承故障振动信号的相位信息且能够有效地抑制噪声。利用正交小波基将滚动轴承故障振动信号变换到时间-尺度域,对高频段尺度域的小波系数进行11/2维谱分析,不仅能检测到滚动轴承的存在,而且能有效地识别滚动轴承的故障模式。  相似文献   

14.
行星齿轮箱广泛应用于各种机械设备中,其故障诊断问题是近年来的研究热点之一。提出了基于Hilbert振动分解和高阶微分能量算子的故障诊断方法。Hilbert振动分解计算复杂性低,能够将复杂信号分解为单分量,应用该方法对信号进行分解,满足高阶微分能量算子的要求。高阶微分能量算子的时间分辨率高,对信号的瞬态变化具有良好的自适应性,应用该方法检测故障引起的瞬态冲击,估计信号的幅值包络和瞬时频率。对高阶微分能量算子输出以及幅值包络和瞬时频率进行Fourier变换,通过频谱识别特征频率,从而诊断行星齿轮箱故障。分析了行星齿轮箱的仿真信号和实验信号,准确地诊断了太阳轮、行星轮和齿圈的故障,验证了该方法的有效性。  相似文献   

15.
早期故障及时检测与预防维护具有很大的经济与安全意义,提出一种基于相关向量机(RVM)的智能故障诊断方法用于检测齿轮早期故障。首先,小波包变换与Fisher准则结合,自动确定最优分解层次,并在小波包树节点能量中提取出具有最大分类能力的全局最优特征;其次,RVM用于训练故障诊断模型;最后,在线监控过程中,对连续监测的特征值做滑动平均滤波,再输入到故障诊断模型。实验表明,该方法具有很高的分类精度,RVM模型比SVM模型更适合在线故障监测。  相似文献   

16.
频率切片小波变换(Frequency Slice Wavelet Transform,FSWT)是一种新的时频分析方法,信号中的噪声会降低FSWT分析的频率分辨率。为了提高分析精度,提出了基于形态滤波和时延自相关的时频切片分析方法,并成功应用到轴承故障诊断中。该方法首先采用多结构元素差值形态滤波和时延自相关方法对信号进行降噪,采用FSWT分解降噪后的轴承振动信号,然后根据轴承故障特征频率选择时间频率切片区间,进行细化分析来提取故障特征。仿真信号与轴承故障诊断实例的分析验证了该方法的有效性。  相似文献   

17.
与轴承、定轴齿轮箱相比,提取行星齿轮箱的故障特征更加困难,且传统方法对行星齿轮箱的诊断效果不好。针对行星齿轮箱故障振动信号的非线性、复杂性等特性,提出一种基于小波包样本熵和均方根值的故障特征提取新方法。该方法首先对原始信号进行连续等长度截取,获得样本信号,再利用小波包变换分解样本信号,计算分解后各频段的样本熵和均方根值,并进行归一化处理。将归一化参数作为加权平均的权重,计算加权平均的样本熵和均方根值。最后将两参数做商得到新参数。故障诊断及抗噪试验结果表明,新特征提取方法能增大行星齿轮箱不同故障特征的区分度且有较好的稳定性,同时新参数具有一定的抗噪性。  相似文献   

18.
基于时—能密度分析的滚动轴承故障诊断   总被引:3,自引:1,他引:2  
根据滚动轴承局部故障振动信号的特征,提出了基于小波变换的时-能密度分析的新方法。轴承旋转元件通过故障部位产生的脉冲力的频率决定了模态频率带信号能量随时间的分布情况。利用小波基将滚动轴承故障振动信号变换到时间-尺度域,对模态频率区间的时-能密度作谱分析,不仅能检测到滚动轴承故障的存在,而且能有效地识别滚动轴承的故障部位。  相似文献   

19.
罗毅  甄立敬 《振动与冲击》2015,34(3):210-214
为实现风电机组齿轮箱及时有效地监测和维护,提出基于小波包与倒频谱分析的风电机组齿轮箱齿轮裂纹诊断方法。该方法针对齿轮裂纹振动信号为转速频率对啮合频率及其倍频调制的特点,利用小波包分解来识别振动信号中的故障特征,通过小波包频带能量监测得到故障部位的啮合频率范围;考虑到倒频谱可以分离和提取难以识别的密集调制信号的周期成分,基于倒频谱识别故障部位的转速频率,综合利用两种频谱分析方法得到的啮合频率和转速频率,能诊断故障部位和类型。实验研究表明,该方法能精确地诊断齿轮裂纹故障,并可以实现对风电机组齿轮在复杂环境中退化状态的监测,预防断齿等重大故障的发生。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号