首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
陈晓刚  陈忻  周子凡  廖成甜 《广东化工》2012,39(17):32-33,66
以六水氯化镁为原料,利用氨水和氢氧化钠混合溶液为沉淀剂,采用直接沉淀法制备纳米氢氧化镁。其最佳反应条件为温度60℃,反应时间90 min,氯化镁浓度0.5 mol/L,体积比为1∶1乙醇和水为混合溶剂,表面活性剂聚乙二醇-400用量为六水氯化镁质量的3%,烘干温度为80℃。实验得到粒径分布窄、分散性好的氢氧化镁粉体,对纳米氢氧化镁的工业化生产有重要意义。  相似文献   

2.
以磷矿除镁后的废液与氨水为原料,在撞击流反应器中,采用氨法二步沉淀,探索了回收镁元素的工艺过程,制取了高纯度的氢氧化镁粒子,以聚乙二醇(PEG)6000为分散剂,制备出分散性良好的纳米氢氧化镁粒子。探讨了有关因素对产品中氢氧化镁含量和氧化镁回收率的影响,确定了适宜的工艺条件:除镁废液中氧化镁质量浓度为0.008g/mL,第一次中和反应终点pH值为9.5,第二次中和反应终点pH值的范围为10.20~10.30,第二次中和反应时间为45min,分散剂PEG6000的用量为纳米氢氧化镁理论产量的3%,采用三次沉降方式洗涤产品。制备的纳米氢氧化镁粒子粒径大小在40nm左右,产品中氢氧化镁质量分数为99.27%,氧化镁回收率为83.07%。  相似文献   

3.
纳米氢氧化镁阻燃剂的制备研究   总被引:1,自引:0,他引:1  
吴士军 《应用化工》2010,39(6):834-836,839
以氯化镁和氨水为原料,加入适量聚乙二醇(PEG2000)作为表面活性剂,利用直接沉淀法合成了粉末状、粒度均匀且分散性好的纳米氢氧化镁。考察了体系温度、沉淀时间、搅拌速率、反应物配比、PEG2000用量对氢氧化镁颗粒平均粒径的影响,并采用透射电镜(TEM)、X射线衍射(XRD)对颗粒结构进行表征。结果表明,制备纳米氢氧化镁的适宜的工艺条件为:体系温度25℃,沉淀时间20 min,搅拌速率500 r/min,反应物氯化镁和氨水的配比(摩尔比)为1∶3.0,PEG2000用量为1.50 g/mol MgCl2。  相似文献   

4.
以六水氯化镁和氨水为主要原料制备纳米氧化镁,通过正交试验考察了Mg2+浓度、分散剂PEG-400用量、反应温度、陈化时间和缓冲剂冰醋酸的用量5个因素对晶粒粒径的影响,确定了纳米氧化镁的最佳工艺参数:缓冲剂冰醋酸用量为0.015 mol,Mg2+浓度为0.4 mol/L, 分散剂用量为5 mL,反应温度为60 ℃,反应时间为0 h,煅烧温度为550 ℃,煅烧时间为2 h。分析了单因素对纳米氧化镁晶粒的影响。选用对氧磷测试纳米氧化镁的吸附降解性,1 μL的对氧磷在5 min内被0.4 g氧化镁降解吸附了99.19%。1 g纳米氧化镁可降解吸附对氧磷194.9 mg。  相似文献   

5.
介绍了氢氧化镁阻燃剂的国内外研究现状和氢氧化镁的制备工艺。以氢氧化镁的粒度作为考察指标,采用液相沉淀法研究了氢氧化镁制备时的反应时间、反应温度、MgCl2的初始浓度和溶剂等对氢氧化镁粒度的影响,得到最优工艺条件:反应时间90 min,反应温度80℃,MgCl2的初始浓度0.5 mol/L,溶剂为V(水)∶V(乙醇)=1∶1,阻燃型氢氧化镁的平均粒度约为100 nm。  相似文献   

6.
以水氯镁石和氨水为原料,利用直接沉淀法制备高纯氢氧化镁阻燃剂。研究了氯化镁浓度、氨水浓度、反应温度对制备氢氧化镁阻燃剂纯度的影响,确定了制备高纯氢氧化镁阻燃剂的最佳工艺条件,其最佳工艺条件为:氯化镁浓度在2.5~3.0mol/L的范围内、氨水浓度为4.0mol/L、反应温度60℃,反应时间60min。  相似文献   

7.
利用NaOH和MgCl_2反应制备悬浮聚合分散剂氢氧化镁,以过氧化二苯甲酰(BPO)为引发剂,进行苯乙烯(St)悬浮聚合。研究了分散剂用量、引发剂用量、水和单体比、搅拌速度、反应温度及反应时间对聚苯乙烯(PS)珠粒大小、均匀程度和产率的影响。结果表明:氢氧化镁作为分散剂有很好的稳定作用,当苯乙烯为12 mL,适宜的反应温度为95℃;MgCl_2(1 mol/L)4 mL,NaOH (1 mol/L)8 mL;BPO 0.35g;V(水)∶V(St)=4.0∶1;搅拌速度300 r/min,反应时间80 min,制得的PS珠粒透明度良好,颗粒大小均匀,粒径在1~2 mm,收率可以达到90%。  相似文献   

8.
实验以氟硅酸铵和氨水为原料,通过化学沉淀法制备纳米二氧化硅粉体。考察了表面活性剂、反应温度、物料配比等不同工艺条件对纳米二氧化硅粉体的粒度分布、反应收率等的影响。实验结果表明:分散剂十二烷基苯磺酸钠可以有效改善粉体粒度的分布;综合考虑二氧化硅粉体的粒度、反应收率、反应效率和生产成本,确定氟硅酸铵氨化制备二氧化硅的反应温度为常温、反应时间为60 min、物料配比(氟硅酸铵与氨水物质的量比)为1∶4.8、氨水的加料速度为96 m L/min、搅拌速度为200~300 r/min。  相似文献   

9.
以氯化镁和氨水为原料,PVA为分散剂,采用氨水直接沉淀法制备氢氧化镁,再煅烧得超细氧化镁,并对所得产品进行了SEM表征。考察了氯化镁浓度、反应温度、反应时间、添加剂用量、煅烧温度和煅烧时间等因素对氧化镁粒径的影响。确定最佳工艺条件为:氯化镁浓度1mol/L,分散剂PVA用量1%,反应温度50~55℃,反应时间40~45min,煅烧温度为650℃,煅烧时间为2h。结果表明,在最佳工艺条件下制备的氧化镁平均粒径为48nm左右,产品分散性良好。用荧光光谱法测定,氧化镁纯度达到99.8%。  相似文献   

10.
超细氢氧化镁粉体的制备研究   总被引:4,自引:0,他引:4  
以氨水为沉淀剂与氯化镁反应,直接沉淀法制备氢氧化镁,研究反应温度、反应时间、Mg2+的初始浓度、原料配比对产品粒径与形貌的影响,产品使用粒度分析仪、XRD、红外与透射电镜表征,在最佳反应条件(温度35℃,时间30 min,Mg2+浓度1.0 mol/L,摩尔比1∶6)下,制备得到片状,粒径150 nm超细氢氧化镁粉体。  相似文献   

11.
以硼泥为镁源,氨水为沉淀剂,采用直接沉淀法制备出超细片状氢氧化镁粉体。通过研究不同反应条件对氢氧化镁产率的影响,最终得到合成氢氧化镁的最佳工艺条件。利用X射线衍射(XRD)、热重分析(TG)、扫描电镜(SEM)和粒度分析等手段对产物氢氧化镁进行了表征。结果表明:实验所得产物为超细片状氢氧化镁,且晶体比较完善,形貌为六方片状。最佳合成工艺条件:用盐酸在室温下浸出得到镁液,以氨水为沉淀剂,反应终点pH=11、反应温度为60 ℃,沉降时间为2 h、氨水稀释比例(体积比)为1∶1、氨水滴加速度为1滴/s。添加无水乙醇能有效改善氢氧化镁的胶结和分散性。  相似文献   

12.
刘辉  俞强 《河北陶瓷》2013,(4):9-10,12
本研究通过利用镁盐与上清液中的氮氮和磷酸根反应,形成磷酸铵镁沉淀,即鸟粪石晶体(MAP)。以MgCl2·6H2O和Na2HPO4·12H2O为沉淀剂,研究了影响该方法脱氮的因素。得出最佳工艺条件,反应时间为180min,pH值10,Mg:P:N的摩尔配比1:1:l,温度35℃,氨氮去除率为84.23%。  相似文献   

13.
以轻烧粉和氯化铵反应为出发点,研究了氧化镁蒸氨反应过程的动力学和反应机理。结果表明:当反应30 min时,70~90 ℃条件下溶液中镁离子浓度约为0.14 mol/L,100 ℃时浓度为0.5 mol/L。XRD结果表明,蒸氨过程中未反应生成Mg2+的氧化镁以氢氧化镁存在于滤渣中。随着煅烧温度的升高,氧化镁水化反应活化能逐渐增加。当煅烧温度为600 ℃时,反应活化能为64.789 9 kJ/mol;当煅烧温度为800 ℃时,反应活化能为81.350 6 kJ/mol。氢氧化镁和氧化镁按不同物质的量比混合进行蒸氨反应时,蒸氨速率随体系中氢氧化镁含量的增加而升高。氧化镁蒸氨体系可分为2个阶段:第一阶段,氧化镁在铵盐体系中进行水化反应生成氢氧化镁,同时部分氧化镁和氢氧化镁进行蒸氨反应生成镁离子;第二阶段,整个体系完全变成氢氧化镁蒸氨体系。  相似文献   

14.
以氯化镁、氢氧化钠为原料,采用均相沉淀法制备超细氢氧化镁。研究了分散剂种类对氢氧化镁产率和粒径的影响,以及分散剂种类、氯化镁浓度、反应温度等因素对氢氧化镁沉降速率的影响,同时分别选择水、乙醇两种不同的反应介质,对氢氧化镁的粒径及产率进行对比。结果表明,以葡萄糖作为分散剂,氯化镁浓度为0.75 mol/L,反应温度为60 ℃,所得氢氧化镁产率较高,且粒径较小(约为6.4 μm)、粒度分布较均匀。  相似文献   

15.
在甲醇-水的复合溶剂中,以MgCl2·6H2O和NH3·H2O为原料制备碱式氯化镁纤维。研究了甲醇浓度、氯化镁与NH3·H2O物质的量比、氯化镁浓度、反应温度、陈化温度等对碱式氯化镁产率及形貌的影响规律,以正交实验进行优化,并采用XRD、SEM、TG/DTG等对产品进行分析。实验结果表明,甲醇体积分数为25.0%、n(氯化镁)∶ n(NH3·H2O)=3.0∶1、氯化镁浓度为4.0 mol/L、反应温度为25 ℃、陈化温度为50 ℃时,碱式氯化镁一次产率为13.13%,长径比大于100,XRD和TG/DTG结果证实产品组成为Mg2(OH)3Cl·4H2O。产率比水相中产率提高了近 1倍,表明甲醇-水体系是制备高产率碱式氯化镁的有效方法之一。  相似文献   

16.
王宝和  云利娜 《河南化工》2010,27(21):35-38
以碱式氯化镁纳米棒为前驱物,采用沉淀转化法制备出直径100~200nm,长约6μm的氢氧化镁单晶纳米棒。通过X-射线衍射(XRD)、扫描电子显微镜(SEM)和选区电子衍射(SAED)对产物进行表征与检测,研究了溶剂、沉淀转化剂类型、氢氧化钠溶液初始浓度、反应物物质的量比、反应温度及反应时间等制备工艺参数对产物形貌的影响,获得的最佳制备工艺条件为:溶剂为乙醇,沉淀转化剂为氢氧化钠,氢氧化钠溶液初始浓度为2mol/L,氢氧化钠与碱式氯化镁的物质的量比为2:1,反应温度为60℃,反应时间为1h。  相似文献   

17.
赖喆  宗刚 《过滤与分离》2010,20(1):19-22
采用次氯酸盐氧化法,以次氯酸钠与硫酸铁为原料,现场制备高铁酸钠溶液,确定了铁盐投加量、氢氧化钠投加量、反应温度、反应时间等最佳制备条件,并应用于染料废水。实验结果表明,高铁酸钠溶液最佳制备条件为:10g氢氧化钠,2.80g硫酸铁,反应温度33℃~36℃,反应时间60min。所制备的高铁酸钠摩尔浓度为0.03mol/L。应用于染料废水色度的去除时,其最佳降解工艺参数为:投加的高铁酸钠的体积百分比为1.2%,溶液pH值为中性6~8,反应温度选择室温,反应时间为0~15min时最佳。  相似文献   

18.
研究了乙撑亚胺法合成牛磺酸的方法:以乙醇胺碱性条件合成乙撑亚胺。乙醇胺硫酸酯与氢氧化钠配比化学计量比为1:1.20最佳,反应温度110℃~120℃;起始的乙醇胺硫酸酯与亚硫酸氢铵配比为1:1.15,乙撑亚胺与亚硫酸氢铵开环反应控制温度在40℃以下,时间为1~1.5h,pH为8左右。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号