首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the H input/output (I/O) linearization formulation is applied to design an inner‐loop nonlinear controller for a nonlinear ship course‐keeping control problem. Due to the ship motion dynamics are non‐minimum phase, it is impossible to use the ordinary feedback I/O linearization to resolve. Hence, the technique of H I/O linearization is proposed to obtain a nonlinear H controller such that the compensated nonlinear system approximates the linear reference model in I/O behaviour. Then a μ‐synthesis method is employed to design an outer‐loop robust controller to address tracking, regulation, and robustness issues. The time responses of the tracking signals for the closed‐loop system reveal that the overall robust nonlinear controller is able to provide robust stability and robust performance for the plant uncertainties and state measurement errors. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
The problem on robust H control for a class of nonlinear systems with parameter uncertainty is studied. Sufficient conditions for the existence of the dynamic output feedback controller are obtained. Under these conditions, the closed-loop systems have robust H-performance. A numerical example is given to illustrate the design of a robust controller using the proposed approach.  相似文献   

3.
4.
This paper is concerned with the problem of robust H controller design for a class of uncertain networked control systems (NCSs). The network‐induced delay is of an interval‐like time‐varying type integer, which means that both lower and upper bounds for such a kind of delay are available. The parameter uncertainties are assumed to be normbounded and possibly time‐varying. Based on Lyapunov‐Krasovskii functional approach, a robust H controller for uncertain NCSs is designed by using a sum inequality which is first introduced and plays an important role in deriving the controller. A delay‐dependent condition for the existence of a state feedback controller, which ensures internal asymptotic stability and a prescribed H performance level of the closed‐loop system for all admissible uncertainties, is proposed in terms of a nonlinear matrix inequality which can be solved by a linearization algorithm, and no parameters need to be adjusted. A numerical example about a balancing problem of an inverted pendulum on a cart is given to show the effectiveness of the proposed design method.  相似文献   

5.
This paper investigates the problem of delay‐dependent robust stochastic stabilization and H control for uncertain stochastic nonlinear systems with time‐varying delay. System uncertainties are assumed to be norm bounded. Firstly, by using novel method to deal with the integral terms, robustly stochastic stabilization results are obtained for stochastic uncertain systems with nonlinear perturbation, and an appropriate memoryless state feedback controller can be chosen. Compared with previous results, the new technique can sufficiently utilize more negative items information. Then, robust H control for uncertain stochastic system with time‐varying delay and nonlinear perturbation is considered, and the controller is designed, which will guarantee that closed‐loop system is robustly stochastically stable with disturbance attenuation level. Finally, two numerical examples are listed to illustrate that our results are effective and less conservative than other reports in previous literature. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, the H approximate I/O linearization formulation and μ‐synthesis are employed to design a nonlinear controller for an aircraft longitudinal flight control problem. We propose modified nonlinear H controller formulas to approximately linearize the system and use μ‐synthesis to address tracking, regulation, and robustness issues.  相似文献   

7.
A design criterion is developed to achieve the input-output decoupling of multivariable feedback systems and the robust stabilization of systems with time-varying nonlinear uncertainties. Moreover, an effective design algorithm is derived to achieve the robust optimization of multivariable feedback systems subjected to time-varying nonlnear uncertainties. The theory of minimum H -norm and the optimal interpolation technique are employed to solve this robust optimization problem. Since the requirements of internal stability are satisfied, this design algorithm performs appropriately, even if the plant is unstable and/or non-minimum phase. From the result of the robust optimization, we can predict the maximum sector bounds of nonlinear uncertainties that can be tolerated in the multivariable feedback system.  相似文献   

8.
This article focuses on the problems of robust stabilisation and H control for nonlinear uncertain stochastic systems with mode-dependent time delay and Markovian jump parameters represented by the Takagi–Sugeno (T-S) fuzzy model approach. The system under consideration involves parameter uncertainties, Itô-type stochastic disturbances, Markovian jump parameters and unknown nonlinear disturbances. The purpose is to design a state feedback controller such that the closed-loop system is robustly exponentially stable in the mean square and satisfies a prescribed H performance level. Novel delay-range-dependent conditions in the form of linear matrix inequalities (LMIs) are derived for the solvability of robust stabilisation and H control problem. A desired fuzzy controller can be constructed by solving a set solutions of LMIs and can be easily calculated by Matlab LMI control toolbox. Finally, a numerical example is presented to illustrate the proposed method.  相似文献   

9.
In this paper, the robust reliable H controller is designed for the problem of nonlinear actuator fault case in the uncertain networked control systems with randomly occurring missing data. More precisely, the occurrence of missing measurements is modeled by a stochastic variable in terms of Bernoulli random distribution. Also, the consideration of a nonlinear term in the input control scheme is a novel work for the proposed model. Suitable robust reliable design of control for a practical actuator fault model is constructed to guarantee the asymptotic stability of the system with H performance level. A new form of Lyapunov‐Krasovskii functional with triple integral terms are formulated, and the reciprocally convex technique is utilized to establish the sufficient stability criterion in the form of linear matrix inequalities. Finally, the effectiveness of the proposed control method is shown through numerical examples, and we can confirm that the derived condition attained less conservatism than the existing results.  相似文献   

10.
Based on the method of inequalities and H -optimization method, this paper develops an approach to robust control design of multivariable critical systems with external and internal uncertainties. In this approach the formulation of the robust control design of these systems is expressed by a set of inequalities which includes output performance criteria in the time domain and a robust performance criterion in the frequency domain of the system. Some relationships between an input space, a modelling error space, a controller, output performance and robust performance are established by inequalities for SISO and MIMO critical systems so that the robust control design problem of these systems is largely simplified.  相似文献   

11.
This paper is devoted to the finite-time disturbance attenuation problem of affine nonlinear systems. Based on the finite time Lyapunov stability theory, some finite-time H performance criterions are derived. Then the state-feedback control law is designed and the structure of such a controller is investigated. Furthermore, it is shown that the H controller can also make the closed-loop system satisfy finite-time H performance for nonlinear homogeneous systems. An example is provided to demonstrate the effectiveness of the presented results.  相似文献   

12.
The paper reports results on the design and analysis of the multivariable feedback Hinfin; robust system for plasma current, position and shape control in the fusion energy advanced tokamak (FEAT) developed in the International Thermonuclear Experimental Reactor (ITER) project. The system contains the fast loop with the SISO plasma vertical speed robust controller and the slow loop with the MIMO plasma current and shape robust controller. The goal is to study the resources of the system robustness to achieve a higher degree of the FEAT operation reliability. Two Hinfin; block diagonal controllers {K SISO, K MIMO} were designed by a mixed sensitivity approach in the framework of the disturbance rejection configuration. These controllers were compared with block diagonal decoupling, PI and LQG controllers at the set of FEAT key scenario points according to the multiple-criterion: nominal performance at minor disruptions, robust stability and robust performance. The Hinfin; controllers showed larger multivariable stability margin and better nominal performance.  相似文献   

13.
A robustness design of fuzzy control via model-based approach is proposed in this article to overcome the effect of approximation error between multiple time-delay nonlinear systems and Takagi--Sugeno (T-S) fuzzy models. A stability criterion is derived based on Lyapunov's direct method to ensure the stability of nonlinear multiple time-delay systems especially for the resonant and chaotic systems. Positive definite matrices P and Rk of the criterion are obtained by using linear matrix inequality (LMI) optimization algorithms to solve the robust fuzzy control problem. In terms of the control scheme and this criterion, a fuzzy controller is then designed via the technique of parallel distributed compensation (PDC) to stabilize the nonlinear multiple time-delay system and the H control performance is achieved at the same time. Finally, two numerical examples of the chaotic and resonant systems are demonstrated to show the concepts of the proposed approach.  相似文献   

14.
This paper proposes a new mixed policy iteration and value iteration (PI/VI) design method for nonlinear H control based on the theories of polynomial optimization and Lasserre's hierarchy. The design of a mixed PI/VI controller can be carried out in four steps: firstly, initialize design parameters and expand nonlinear system matrices; secondly, obtain a polynomial matrix inequality for policy improvement; thirdly, obtain the Lasserre's hierarchy of a global polynomial optimization problem for value improvement; fourthly, perform the mixed PI/VI algorithm to approximate the optimal nonlinear H control law. The novelty of this work lies in that the problem of designing a nonlinear H controller is translated into a polynomial global optimization problem, which can be solved by Lasserre's hierarchy directly, and then, the mixed PI/VI algorithm is presented to approximate the optimal nonlinear H control law by updating global optimizers iteratively. The main results of this paper consist of the mixed PI/VI algorithm and the related three theorems, which guarantee robust stability and performance of the closed‐loop nonlinear system. Numerical simulations show that the mixed PI/VI algorithm converges very fast and achieves good robust stability and performance in transient behavior, disturbance rejection, and enlarging the domain of attraction of the close‐loop system.  相似文献   

15.
This paper deals with the problem of finite-time-horizon robust H control via measurement feedback, for affine nonlinear systems with nonlinear time-varying parameter uncertainty. The problem addressed is the design of a control law, which processes the measured output and guarantees a prescribed level of closed-loop disturbance attenuation. Conditions for the existence of such a controller are obtained by solving an auxiliary control problem for a related system which is obtained from the original one by converting the parameter uncertainty into exogenous bounded energy signals. This approach allows us to apply the recently developed H nonlinear control techniques to solve the robust control problem. The problem is investigated in both the continuous- and discrete-time cases. The results are demonstrated by a simple example. © 1997 by John Wiley & Sons, Ltd.  相似文献   

16.
A kind of H non‐fragile synchronization guaranteed control method is put forward for a class of uncertain time‐varying delay complex network systems with disturbance input. The network under consideration includes unknown but bounded nonlinear coupling functions f(x) and the coupling term and node system with time‐varying delays. The nonlinear vector function f(x) need not be differentiable but should satisfy the norm bound. A non‐fragile state feedback controller of the gain with sufficiently large regulation margin is designed. It is ensured that the parameters of the controller could still be effective under small perturbation. The sufficient conditions for the existence of H synchronous non‐fragile guaranteed control of this system have been obtained by constructing a suitable Lyapunov‐Krasovskii functional, adopting matrix analysis, using the theorem of Schur complement and linear matrix inequalities (LMI). These conditions can guarantee robust asymptotic stability for each node of network with disturbance as well as achieve a prescribed robust H performance level. Finally, the feasibility of the designed method is verified by a numerical example.  相似文献   

17.
This paper addresses the problem of designing mixed H2/H tracking control for a large class of uncertain robotic systems. Nonlinear H control theory, H2 control theory and intelligent adaptive control algorithm are combined to construct a hybrid adaptive/robust H2/H tracking control scheme. One adaptive neural network system is constructed to approximate the behaviour of uncertain robot dynamics, and the other adaptive control algorithm is designed to estimate the behaviour of the modelled disturbance. Moreover, a robust H control algorithm is designed to attenuate the effects of the unmodelled disturbance. Only a set of algebraic matrix Riccati-like equations is required to implement the proposed mixed H2/H tracking controller, and so an explicit and closed-form solution is obtained. Consequently, the mixed H2/H adaptive/robust tracking controller developed here can be analytically computed and easily implemented. Finally, simulations are presented to illustrate the effectiveness of the proposed control algorithm.  相似文献   

18.
This paper investigates a global stabilization problem and a nonlinear H control problem for a class of nonminimum phase nonlinear multivariable systems. To avoid the complicated recursive design procedure, an asymptotic time‐scale and eigenstructure assignment method is adopted to construct the control laws for the stabilization problem and the nonlinear H control problem. A sufficient solvability condition is established onthe unstable zero dynamics of the system for global stabilization problem and nonlinear H control problem, respectively. Moreover, based on the sufficient solvability condition, an upper bound of the achievable L2‐gain is estimated for the nonlinear H control problem. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
This paper addresses the problem of robust stabilization and tracking control for a class of switched nonlinear systems via the multiple Lyapunov functions (MLFs) approach. First, a state feedback controller and a state dependent switching law are designed to globally asymptotically stabilize the switched system via linear matrix inequalities (LMIs). The main objective of this paper is to develop a tracking control approach that assures global asymptotic output and state tracking with zero tracking error in the steady state. Then, the tracking control is formulated such that the robust H tracking performance is achieved. Finally, a simulation example is provided to demonstrate the effectiveness of the main method.  相似文献   

20.
In this paper, robust stabilization conditions based on theH -norm are derived for multivariable feedback systems under perturbations and constrained control. The parametrized controller of Youlaet al. is employed to treat this problem. In addition, a necessary and sufficient condition is derived for the solvability of the synthesis problem for a controller which achieves robust stability. Finally, a design procedure is proposed for selecting the parameters of the robust controller, and an illustrative example is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号