首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The study was designed to evaluate skin permeation enhancement effect of essential oils from Eugenia caryophyllata (clove oil) in rabbits and to compare the in vitro absorption and in vivo permeation using ibuprofen as a model drug. The in vitro results indicated a significant permeation enhancement effect of the clove oil. The group with 1% oil appeared to the flux (239 μg/cm2/hr), and 3% oil was 293 μg/cm2/hr to some extent similar with 2% azone group (327 μg/cm2/hr). The enhancement ratio of clove oil was 7.3. In vivo results also demonstrated that clove oil showed a significant permeation enhancement effect, but the enhancement of clove oil was relatively weak than in vitro. The group with 3% oil exhibited the higher value of area under the curve (AUC) of 80.8 μg/mL·hr, which was 2.4 times the high of control. The AUC value of 3% oil group was similar to that of 2% azone group (89.8 μg/mL·hr). The GC-MS results indicated eugenol and acetyleugenol identified from clove oil might mainly contribute to enhance in vitro and in vivo absorption of ibuprofen because of its large quantities (90.93%).  相似文献   

2.
Vesicular systems endow large opportunities for the transdermal delivery of therapeutics. The present study was designed to investigate the potential of a novel class of vesicular system ‘proniosome’ as a carrier for transdermal delivery of bromocriptine (BCT). Proniosome formulations were prepared by the coacervation-phase separation method and the influence of factors like surfactant type and its amount, lipid concentration, cholesterol amount and drug content were studied. Span 60 was the most appropriate surfactant, and yielded vesicle size and percentage encapsulation efficiency of 1.3 µm and 98.9%, respectively. The developed system was characterised w.r.t. morphology, transition temperature, drug release, skin permeation and skin irritancy. Proniosomes exhibited a sustained release pattern of BCT in vitro. Skin permeation study revealed high penetration of proniosomes with sustained release of BCT through rat skin. The optimised proniosomal formulation showed enhanced transdermal flux of 16.15 μg/cm2/h as compared to 3.67 μg/cm2/h for drug dispersion. The developed formulations were observed as non-irritant to the rat skin and were found as quite stable at 4 and 25 °C for 90 days w.r.t. vesicle size and drug content. The dried proniosomal formulation could act as a promising alternative to niosomes and preferably for transdermal delivery of BCT.  相似文献   

3.
Abstract

Objective: This study was designed to optimize and develop matrix type transdermal drug delivery system (TDDS) containing tizanidine hydrochloride (TZH) using different polymers by solvent evaporation method.

Significance: A strong need exists for the development of transdermal patch having improved bioavailability at the site of action with fewer side effects at off-target organs.

Methods: The patches were physically characterized by texture analysis (color, flexibility, smoothness, transparency, and homogeneity), in vitro dissolution test and FTIR analysis. Furthermore, functional properties essential for TDDS, in vitro percentage of moisture content, percentage of water uptake, in vitro permeation by following different kinetic models, in vivo drug content estimation and skin irritation were determined using rabbit skin.

Results: The optimized patches were soft, of uniform texture and thickness as well as pliable in nature. Novel transdermal patch showed ideal characteristics in terms of moisture content and water uptake. FTIR analysis confirmed no interaction between TZH and cellulose acetate phthalate (CAP). The patch showed sustained release of the drug which increased the availability of short acting TZH at the site of action. The patch also showed its biocompatibility to the in vivo model of rabbit skin.

Conclusions: The results demonstrated that topically applied transdermal patch will be a potential medicated sustain release patch for muscle pain which will improve patient compliance.  相似文献   

4.
Background: Methotrexate (MTX) causes systemic toxicity thereby limiting its use; hence, transdermal delivery would be a possible alternative. Method: A comparative in vitro/in vivo study was done to see the effect of the two-tier system of chemical and physical enhancers. MTX was loaded into polyacrylamide-based hydrogel patch to see the effect of enhancers. Result: Flux enhancement (161%) of MTX was achieved when ternary mixture of ethyl acetate:menthol:ethanol (1:1:1) was used in combination with square-wave iontophoresis for 1hour. Lower flux enhancement of 71%, 83%, and 93.5% was obtained in vitro with neat ethyl acetate, its binary composition with ethanol, and its ternary composition with ethanol and menthol, respectively, as compared to passive. However, with square-wave iontophoresis, it increased to 126%, 140%, and 161%, respectively. The mechanism of flux enhancement was supported by biophysical tools such as attenuated total reflectance–Fourier transform infrared spectroscopy (ATR–FTIR), scanning electron microscopy (SEM), and histopathology. ATR–FTIR studies demonstrated split in the asymmetric C–H vibration and amide II band with terpenes and iontophoresis, respectively. Additionally binary and ternary mixture of ethyl acetate demonstrated absence of ester peak accounting for lipid extraction. SEM of the skin samples treated with chemical enhancers in combination with square-wave iontophoresis showed both swelling and increased pore size of hair follicles, thus supporting higher permeation. Histopathological studies on treated skin samples of albino mice demonstrated epidermal thinning and focal disruptions, spongiosis, dermal edema, and appendageal dilatations. In vivo studies on mice demonstrated plasma concentration of 18.79μg/mL with ternary mixture of ethyl acetate in combination with square wave, which is twofold higher to oral delivery. The reversibility studies conducted in vivo on mice demonstrated that the histological changes induced by the above-mentioned enhancers were transient and reversible in 48 hours. Conclusion: The above results indicate that the above-mentioned enhancers are safe and well tolerated by the skin.  相似文献   

5.
This study investigated simultaneous transdermal delivery of indomethacin and benzocaine from microemulsion. Eucalyptus oil based microemulsion was used with Tween 80 and ethanol being employed as surfactant and cosurfactant, respectively. A microemulsion formulation comprising eucalyptus oil, polyoxyethylene sorbitan momooleate (Tween 80), ethanol and water (20:30:30:20) was selected. Indomethacin (1% w/w) and benzocaine (20% w/w) were incorporated separately or combined into this formulation before in vitro and in vivo evaluation. Application of indomethacin microemulsion enhanced the transdermal flux and reduced the lag time compared to saturated aqueous control. The same trend was evident for benzocaine microemulsion. Simultaneous application of the two drugs in microemulsion provided similar enhancement pattern. The in vivo evaluation employed the pinprick method and revealed rapid anesthesia after application of benzocaine microemulsion with the onset being 10?min and the action lasting for 50?min. For indomethacin microemulsion, the analgesic effect was recorded after 34.5?min and lasted for 70.5?min. Simultaneous application of benzocaine and indomethacin provided synergistic effect. The onset of action was achieved after 10?min and lasted for 95?min. The study highlighted the potential of microemulsion formulation in simultaneous transdermal delivery of two drugs.  相似文献   

6.
The enhancing effect of p-menthane-3,8-diol (MDO) on skin permeation of antipyrine (ANP) and indomethacin (IM) through Yucatan micropig skin in vitro was compared with l-menthol. p-menthane-3,8-diol is a metabolite of l-menthol and has little odor. It is easy to combine the vehicle because of lower lipophilicity than l-menthol. All formulations contained 40% (v/v) ethanol. The permeation of ANP increased with MDO about three times that without enhancer by increasing ANP concentration in the skin. However, the MDO effect was about a quarter that of l-menthol. The permeation of IM with MDO was about 15 times that with no enhancer and it was almost the same as that with l-menthol. The lag time of permeation was not significantly changed by MDO, which was not so in the case of l-menthol. Skin concentration of IM increased about 11 times and six times with MDO and l-menthol, respectively. MDO and l-menthol partitioned to the skin relatively high concentrations, 5.9 and 2.5 mg/cm3, respectively. The solubility of IM in the skin was improved by MDO, and consequently, the permeation of IM was enhanced.  相似文献   

7.
The effects of several electrolyzed waters were evaluated on the permeation of model base, acid and non-ionized compounds, lidocaine (LC), benzoic acid (BA), and isosorbide mononitrate (ISMN), respectively, through excised hairless rat skin. Strong alkaline-electrolyzed reducing water (ERW) enhanced and suppressed the skin permeation of LC and BA, respectively, and it also increased the skin permeation of ISMN, a non-ionized compound. On the contrary, strong acidic electrolyzed oxidizing water (EOW) enhanced BA permeation, whereas suppressing LC permeation. Only a marginal effect was observed on the skin permeation of ISMN by EOW. These marked enhancing effects of ERW on the skin permeation of LC and ISMN were explained by pH partition hypothesis as well as a decrease in skin impedance. The present results strongly support that electrolyzed waters, ERW and EOW, can be used as a new vehicle in topical pharmaceuticals or cosmetics to modify the skin permeation of drugs without severe skin damage.  相似文献   

8.
Tetrahydrocurcumin (THC) also referred to as ‘white curcumin’, is a stable colorless hydrogenated product of curcumin with superior antioxidant and anti-inflammatory properties. The present study is an attempt to elevate the topical bioavailability of THC, post-incorporation into a nano-carrier system with its final dosage as a hydrogel. Lipid nanoparticles of THC (THC-SLNs) prepared by microemulsification technique were ellipsoidal in shape (revealed in transmission electron microscopy) with a mean particle size of 96.6?nm and zeta potential of ?22?mV. Total drug content and entrapment efficiency of THC-SLNs was 94.51%?±?2.15% and 69.56%?±?1.35%, respectively. Differential scanning calorimetry and X-ray diffraction studies confirmed the formation of THC-SLNs. In vitro drug release studies showed the drug release from THC-SLNs gel to follow Higuchi’s equation revealing a Fickian diffusion. Ex vivo permeation studies indicated a 17 times (approximately) higher skin permeation of THC-SLNs gel as compared with the free THC gel. Skin irritation, occlusion, and stability studies indicated the formulation to be nonirritating, and stable with a desired occlusivity. Pharmacodynamic evaluation in an excision wound mice model clearly revealed the enhanced anti-inflammatory activity of THC-SLNs gel and was further confirmed using biochemical and histopathological studies. It is noteworthy to report here that THC-SLNs gel showed significantly better (p?≤?0.001) activity than free THC in gel. As inflammation is innate to all the skin disorders, the developed product opens up new therapeutic avenues for several skin diseases. To the best of our knowledge, this is the first paper elaborating the therapeutic usefulness of white curcumin-loaded lipidic nanoparticles for skin inflammation.  相似文献   

9.
Objective: The aim of this study was to develop a coenzyme Q10 nanoemulsion cream, characterize and to determine the influence of omega fatty acids on the delivery of coenzyme Q10 across model skin membrane via ex vivo and in silico techniques.

Methods: Coenzyme Q10 nanoemulsion creams were prepared using natural edible oils such as linseed, evening primrose, and olive oil. Their mechanical features and ability to deliver CoQ10 across rat skin were characterized. Computational docking analysis was performed for in silico evaluation of CoQ10 and omega fatty acid interactions.

Results: Linseed, evening primrose, and olive oils each produced nano-sized emulsion creams (343.93–409.86?nm) and exhibited excellent rheological features. The computerized docking studies showed favorable interactions between CoQ10 and omega fatty acids that could improve skin permeation. The three edible-oil nanoemulsion creams displayed higher ex vivo skin permeation and drug flux compared to the liquid-paraffin control cream. The linseed oil formulation displayed the highest skin permeation (3.97?±?0.91?mg/cm2) and drug flux (0.19?±?0.05?mg/cm2/h).

Conclusion: CoQ10 loaded-linseed oil nanoemulsion cream displayed the highest skin permeation. The highest permeation showed by linseed oil nanoemulsion cream may be due to the presence of omega-3, -6, and -9 fatty acids which might serve as permeation enhancers. This indicated that the edible oil nanoemulsion creams have potential as drug vehicles that enhance CoQ10 delivery across skin.  相似文献   

10.
The aim of the present paper was to investigate the promoting activity of borneol on the transdermal permeation of drugs with differing lipophilicity, and probe its alterations in molecular organization of stratum corneum (SC) lipids. The toxicity of borneol was evaluated in epidermal keratinocyte HaCaT and dermal fibroblast CCC-HSF-1 cell cultures and compared to known enhancers, and its irritant profile was also assessed by transepidermal water loss (TEWL) evaluation. The promoting effect of borneol on the transdermal permeation of five model drugs, namely 5-fluorouracil, antipyrine, aspirin, salicylic acid and ibuprofen, which were selected based on their lipophilicity denoted by logp value, were performed using in vitro skin permeation studies. Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) was employed to monitor the borneol-induced alteration in molecular organization of SC lipids. The enhancer borneol displayed lower cytotoxicity or irritation in comparison to the well-established and standard enhancer Azone. Borneol could effectively promote the transdermal permeation of five model drugs, and its enhancement ratios were found to be parabolic curve with the logp values of drugs, which exhibited the optimum permeation activity for relatively hydrophilic drugs (an estimated logp value of??0.5 ~0.5). The molecular mechanism studies suggested that borneol could perturb the structure of SC lipid alkyl chains, and extract part of SC lipids, resulting in the alteration in the skin permeability barrier.  相似文献   

11.
Purpose: This study was aimed at investigating the possible relationship between the physical properties and the permeation of S-amlodipine and RS-amlodipine and studying the possible enantioselectivity of permeation of amlodipine in the presence and absence of enhancers, such as terpene enhancers and ethanol. Method: The solubility of S-amlodipine and RS-amlodipine was measured using the shake-flask method. The thermodynamic properties were investigated by differential scanning calorimetry (DSC). The type of racemate amlodipine was investigated by DSC and Fourier transform infrared spectroscopy (FTIR). The permeability of racemate and enantiomers of amlodipine through rat epidermis in vitro was investigated using the modified Franz diffusion cell. Results: The aqueous solubility of S-amlodipine was higher than that of RS-amlodipine. The melting temperature and enthalpy of fusion of S-amlodipine were lower than those of RS-amlodipine. RS-amlodipine was a racemic compound. The permeation of the enantiomers of amlodipine from RS-amlodipine reservoir showed no significant differences in the presence and absence of enhancers, but the permeation of S-amlodipine from S-amlodipine reservoir was significantly higher than that of RS-amlodipine from RS-amlodipine reservoir 30% ethanol, 50% ethanol, and terpene enhancers could not influence the difference in permeation between S-amlodipine and RS-amlodipine, but 75% ethanol could reduce the difference. Conclusion: These results suggested that there was no enantioselectivity of the enantiomers of amlodipine from RS-amlodipine reservoir in the presence and absence of enhancers, but the differences in physical properties between S-amlodipine and RS-amlodipine led to the difference in permeation across rat skins.  相似文献   

12.
Context: Our group previously reported the photoinstability of some desonide topical commercial formulations under direct exposure to UVA radiation.

Objective: This study aimed to prepare and characterize a gel-cream containing desonide, with greater photostability than the commercial gel-cream (C-GC). Benzophenone-3 (BP-3) was used as a photostabilizing agent.

Methods: The gel-cream developed (D-GC) containing BP-3 at 0.1% was prepared and characterized regarding its pH, drug content, spreadability, viscosity, in vitro drug release and in vitro permeation. The in vivo anti-inflammatory effect was assessed by ear edema measurement, croton oil-induced acute skin inflammation and myeloperoxidase assay.

Results and Discussion: D-GC presented characteristics compatible with topical application, appropriate drug content and good spreadability, and non-Newtonian behavior with pseudoplastic flow. D-GC showed a good photostability profile, presenting a desonide content of 95.70% after 48?h of exposure to UVA radiation, and stability under room conditions during 60 days. The amount of desonide released from D-GC and C-GC was 57.8 and 51.7?µg/cm2, respectively, measured using the vertical Franz cell. The in vitro skin permeation showed that desonide reached the site of action of the topical corticosteroids, from both formulations; however, the desonide amount retained in the dermis was lower with D-GC. The in vivo evaluation of topical anti-inflammatory activity indicated that D-GC presented the same biological effect as C-GC.

Conclusion: D-GC represents a promising approach to treat dermatological disorders, since it presented satisfactory physicochemical characteristics, the same biological activity as C-GC and superior photostability, conferred by the addition of BP-3 at 0.1%.  相似文献   

13.
辛国梅 《中国科技博览》2012,(11):144-144,146
平方王油田沙四中储集层具中孔低渗特征,其油层物性和流体物性非均质严重,稳产难度大。根据精细油藏描述及剩余油分布结果,实施了配套控水稳油技术,有效提高了开发效果,对同类油田具指导意义。  相似文献   

14.
A new drug-in-adhesive transdermal patch was developed to deliver both estradiol and levonorgestrel through the skin over a 7-day period, but at different rates. This report elucidates the in vitro and in vivo biopharmaceutical studies that were necessary during the development of this product. Three test patches had to be manufactured, all delivering estradiol at the same rate, but delivering levonorgestrel at three different rates so that a levonorgestrel dose response could be studied in the clinic. An in vitro hairless mouse skin model (HMS) using modified Franz diffusion cells was used to select the test products delivering levonorgestrel in the order of 1:2:3. HMS experiments also demonstrated that the presence of estradiol did not affect the flux of levonorgestrel. Two in vivo studies in postmenopausal women showed that at steady state (four weeks of once-weekly dosing) the three test products all delivered estradiol at comparable rates. Similarly, the levonorgestrel deliveries for the three test products were in the order expected. The target fluxes of both drugs were achieved in these three test products by varying the drug loads and patch size. That this approach was successful is evidence of the value of using the HMS penetration experiments in transdermal product development and should provide useful insights for other formulations having to develop complex systems. One of the test products is now marketed as Climara ProTM.  相似文献   

15.
Most petroleum reservoirs are subjected to Improved and Enhanced Oil Recovery (IOR and EOR) processes following secondary recovery. EOR involves the application of external forces and substances to improve the chemical and physical interactions in hydrocarbon reservoirs in order to improve preferable recovery conditions. The process of chemical flooding with solutions of polymers and surfactants can be used for developing oil exploitation. Studying the interaction between surfactants and polymers is indispensable for successful oil recovery. The interaction between non-ionic and anionic surfactants and polymers in ternary mixtures was examined at different concentrations and temperatures by dynamic light scattering and gel permeation chromatography. The hydrodynamic size of surfactant-polymer composites was higher than the particle size of individual components indicating a formation of associates. The size of associates was increased by increasing the concentration of the surfactants and the temperature. It could be supposed that the polymer formed a mixed micelle with the surfactants. Gel permeation chromatography has confirmed the increase in molecular weight of the associate formed by surfactants and polymers.  相似文献   

16.
Objective: The present study was aimed to investigate the effect of salient microneedle (MN) geometry parameters like length, density, shape and type on transdermal permeation enhancement of Zolmitriptan (ZMT).

Methods: Two types of MN devices viz. AdminPatch® arrays (ADM) (0.6, 0.9, 1.2 and 1.5?mm lengths) and laboratory fabricated polymeric MNs (PM) of 0.6?mm length were employed. In the case of PMs, arrays were applied thrice at different places within a 1.77?cm2 skin area (PM-3) to maintain the MN density closer to 0.6?mm ADM. Scaling analyses was done using dimensionless parameters like concentration of ZMT (Ct/Cs), thickness (h/L) and surface area of the skin (Sa/L2).

Results: Micro-injection molding technique was employed to fabricate PM. Histological studies revealed that the PM, owing to their geometry/design, formed wider and deeper microconduits when compared to ADM of similar length. Approximately 3.17- and 3.65-fold increase in ZMT flux values were observed with 1.5?mm ADM and PM-3 applications when compared to the passive studies. Good correlations were observed between different dimensionless parameters with scaling analyses. Numerical simulations, using MATLAB and COMSOL software, based on experimental data and histological images provided information regarding the ZMT skin distribution after MN application.

Discussion: Both from experimental studies and simulations, it was inferred that PM were more effective in enhancing the transdermal delivery of ZMT when compared to ADM.

Conclusions: The study suggests that MN application enhances the ZMT transdermal permeation and the geometrical parameters of MNs play an important role in the degree of such enhancement.  相似文献   

17.
The objective of research was to develop a novel pH-triggered polymeric nanoparticulate in situ gel (NP-ISG) for ophthalmic delivery of acetazolamide (ACZ) to enhance the conjunctival permeation and precorneal residence time of the formulation by overcoming the limitations of protective ocular barriers. Nanoparticles (NP1--NP12) were developed by nanoprecipitation method and evaluated for pharmacotechnical characteristics including transmission electron microscopy. The optimized formulation, NP10 was dispersed in carbopol 934?P to form nanoparticulate in situ gels (NP-ISG1--NP-ISG5). NP-ISG5 was selected as optimized formulation on the basis of gelation ability and residence time. Ex vivo transcorneal permeation study exhibited significantly higher ACZ permeation from NP-ISG5 (74.50?±?2.20?mg/cm2) and NP10 (93.5?±?2.25?mg/cm2) than eye drops (20.08?±?3.12?mg/cm2) and ACZ suspension (16.03?±?2.14). Modified Draize test with zero score indicated nonirritant property of NP-ISG5. Corneal toxicity study revealed no visual signs of tissue damage. Further, NP-ISG5 when tested for hypotensive effect on intraocular pressure (IOP) in rabbits revealed that NP-ISG5 caused significant decrease in IOP (p?in vitro efficacy, safety and patient compliance.  相似文献   

18.
Tea tree oil (TTO) exhibits excellent broad-spectrum antimicrobial activity. In order to preserve it from the degradation in the presence of oxygen, light and temperature, TTO was encapsulated in liposomes (LTTOs) using the thin-membrane hydration and sonication method, and characterised by Zetasizer for size and size distribution, transmission electron microscope for morphology, zeta-potential for surface charge, entrapment efficiency and TTO release from the nanoparticles. The antimicrobial activities of phosphate-buffered saline solution containing TTO, unloaded liposomes and LTTOs suspension were determined by twofold serial broth dilution technique. The size of LTTOs was 75 nm and the encapsulation efficiency of 96.08% was obtained. LTTOs exhibited slow release of TTO and superior broad-spectrum antimicrobial effects compared with free TTO. Liposomes not only effectively encapsulated TTO to form a stable liposome suspension, but also enhanced inhibition and bactericidal effect on the TTO-tolerant strain. The liposomal systems carrying TTO may be a potential alternative for effective antimicrobial agents.  相似文献   

19.
20.
Purpose: The main objective of this study was to assess the flux enhancement of insulin transdermally by utilizing a complex of chemical enhancers in combination with modulated iontophoresis. Methods: The experiments were performed on porcine epidermis model under three different circumstances, namely, (a) 1-hour modulated iontophoresis alone; (b) pretreatment with vehicle and chemical enhancer combinations and (c) combination of (a) and (b). The mechanism of action of the enhancers was studied using infra-red spectra by derivative and curve-fitting techniques and Confocal laser scanning microscopy. The efficacy of the optimized combination was tested in vivo in streptozocin-diabetic Wistar rats. Results: A blend of 1,8 cineole, oleic acid and sodium deoxycholate in propylene glycol : ethanol (7:3) resulted in 45% enhancement, when permeation was performed in combination with iontophoresis as compared to the latter alone. In-depth analysis of infra-red spectra revealed that each of the enhancers acted differentially on lipid-protein domains of the stratum corneum thereby supporting the observed synergism. Movement of fluorescently labeled insulin depicted highlighted follicular regions and paracellular accumulation of the probe after iontophoresis and chemical enhancer treatment respectively. Presence of the fluorescent peptide in these regions 4 hour after treatment with the combination reinforced the results of the permeation studies. Finally the combination of modulated iontophoresis with chemical enhancer blend resulted in lowering of blood glucose for 8 hour in vivo. Conclusions: The study proved the applicability of modulated iontophoresis with chemical pretreatment in delivering insulin transdermally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号