首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Activation of the multicomponent interleukin-2 receptor (IL-2R) complex leads to a rapid increase in tyrosine phosphorylation of a number of cellular proteins including the IL-2R beta and IL-2R gamma chains of the IL-2R and the RAF-1 serine threonine kinase. In addition, phosphatidylinositol 3-kinase (PI-3K) protein and activity can be immunoprecipitated with anti-phosphotyrosine and anti-IL-2R beta antibodies from IL-2-activated but not resting T lymphocytes. We have demonstrated that the SH2 (SRC homology 2) domains of the 85 kDa subunit of PI-3K are sufficient to mediate binding of the PI-3K complex to tyrosine phosphorylated, but not non-phosphorylated IL-2R beta, suggesting that tyrosine phosphorylation is an integral component of the activation of PI-3K by the IL-2R. Since none of the members of the IL-2R complex contains an intrinsic tyrosine kinase domain, IL-2-induced tyrosine phosphorylation must be the consequence of activation of intracellular tyrosine kinases. SRC family members including lck, lyn and fyn have been demonstrated to associate with IL-2R beta through binding of the kinase domain to the acidic domain of IL-2R beta. However, we have demonstrated that the serine rich (SD) region of the cytosolic domain of IL-2R beta is also required for association of a tyrosine kinase with the IL-2R complex and that IL-2 can induce proliferation and tyrosine phosphorylation in cell lines which lack the known SRC family kinases expressed by T lymphocytes. Thus members of other kinase families besides SRC may also be involved in mediating IL-2 signal transduction. Biochemical studies and studies of cells expressing mutant IL-2 receptors indicate that IL-2-induced tyrosine kinase activation initiates a complex signaling cascade. The cascade includes SRC family kinase members such as lck, fyn, and lyn, activation of Raf-1 and PI-3K, and ras, and increased expression of the fos, fra-1, and jun protooncogenes. In addition, ligation of the IL-2R leads to rapid increases in myc expression and more delayed increases in the expression of the cdc2 and cdk2 kinases and the cyclins through a tyrosine phosphorylation independent pathway. Whether other biochemical processes initiated by IL-2R ligation, including activation of the MAP2, p70S6 and p90RSK serine threonine kinases, activation of NF-kappa B, and increased expression of Raf-1, Pim-1, bcl-2, IL-2R alpha and IL-2R beta, are consequences of the IL-2-induced tyrosine kinase cascade remains to be determined.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
4.
The activation of eosinophils by IL-5 plays a crucial role in the pathogenesis of allergic and parasitic disorders. IL-5 has recently been shown to activate Lyn and Jak2 tyrosine kinases, MAP kinases, and STAT1 nuclear factor. We have previously reported that TGF-beta blocks the IL-5-induced activation of eosinophils. In this study, we investigated the effect of TGF-beta on the IL-5-induced signaling molecules in eosinophils. Purified eosinophils from mildly allergic patients were preincubated with TGF-beta and then stimulated with IL-5. The cell lysates were then immunoprecipitated and blotted with antiphosphotyrosine Abs. The activity of the kinases was further studied in the immune-complex kinase assay. We found that TGF-beta inhibited the tyrosine phosphorylation of multiple proteins in eosinophils. The identity of some of the proteins was established by immunoprecipitation. We found that TGF-beta inhibited tyrosine phosphorylation of Lyn, Jak2, and a 44-kDa MAP kinase. In further experiments, it blocked the activation of the above kinases as determined by immune-complex kinase assay. TGF-beta also inhibited phosphorylation of the STAT1 (p91) nuclear protein in eosinophils. We believe that the inhibition of Lyn, Jak2, MAP kinase, and the STAT1 nuclear protein may underlie the inhibitory activity of TGF-beta on eosinophils.  相似文献   

5.
The GT1-1 GnRH neuronal cell lines exhibit highly differentiated properties of GnRH neurons. We have used GT1-1 cells to study the roles of norepinephrine (NE), membrane depolarization, calcium influx, and phorbol esters in the regulation of mitogen-activated protein (MAP) kinase. NE, which is known to stimulate the release of GnRH, induced MAP kinase activity, the tyrosine phosphorylation of MAP kinase, and MAP kinase kinase activity. Forskolin led to activation of MAP kinase comparable with that induced by NE, and a selective inhibitor of cAMP-dependent protein kinase, H8, attenuated the NE-induced activation of MAP kinase. On the other hand, elimination of extracellular calcium by EGTA completely blocked NE-induced tyrosine phosphorylation of MAP kinase, and a selective inhibitor of calcium/calmodulin-dependent protein kinase, KN-62, attenuated the NE-induced activation of MAP kinase. Furthermore, depolarization of GT1-1 cells with 75 mM KCl, 10 microM BayK 8644, or 1 microM calcium ionophore (A23187) induced rapid tyrosine phosphorylation of MAP kinase. The omission of calcium from the extracellular medium completely abolished these effects of tyrosine phosphorylation of MAP kinase. Phorbol 12-myristate 13-acetate (PMA) also induced MAP kinase activity, but pretreatment of the cultured cells with PMA to down-regulate protein kinase C did not abolish the activation of MAP kinase by NE. In addition, although phosphorylation of Raf-1 kinase was stimulated by PMA, this phosphorylation was not induced by either NE or A23187. These results demonstrate that NE activates MAP kinase directly in GT1-1 cells, and that the effect of NE is mediated by increase in the cAMP level and by calcium influx, but not by PMA-sensitive protein kinase C or Raf-1 kinase.  相似文献   

6.
7.
Activation of the Ras/Raf/mitogen-activated protein kinase kinase/mitogen-activated protein (MAP) kinase signaling cascade is initiated by activation of growth factor receptors and regulates many cellular events, including cell cycle control. Our previous studies suggested that the connexin-43 gap junction protein may be a target of activated MAP kinase and that MAP kinase may regulate connexin-43 function. We identified the sites of MAP kinase phosphorylation in in vitro studies as the consensus MAP kinase recognition sites in the cytoplasmic carboxyl tail of connexin-43, Ser255, Ser279, and Ser282. In this study, we demonstrate that activation of MAP kinase by ligand-induced activation of the epidermal growth factor (EGF) or lysophosphatidic acid receptors or by pervanadate-induced inhibition of tyrosine phosphatases results in increased phosphorylation on connexin-43. EGF and lysophosphatidic acid-induced phosphorylation on connexin-43 and the down-regulation of gap junctional communication in EGF-treated cells were blocked by a specific mitogen-activated protein kinase kinase inhibitor (PD98059) that prevented activation of MAP kinase. These studies confirm that connexin-43 is a MAP kinase substrate in vivo and that phosphorylation on Ser255, Ser279, and/or Ser282 initiates the down-regulation of gap junctional communication. Studies with connexin-43 mutants suggest that MAP kinase phosphorylation at one or more of the tandem Ser279/Ser282 sites is sufficient to disrupt gap junctional intercellular communication.  相似文献   

8.
Integrin-mediated cell adhesion causes activation of MAP kinases and increased tyrosine phosphorylation of focal adhesion kinase (FAK). Autophosphorylation of FAK leads to the binding of SH2-domain proteins including Src-family kinases and the Grb2-Sos complex. Since Grb2-Sos is a key regulator of the Ras signal transduction pathway, one plausible hypothesis has been that integrin-mediated tyrosine phosphorylation of FAK leads to activation of the Ras cascade and ultimately to mitogen activated protein (MAP) kinase activation. Thus, in this scenario FAK would serve as an upstream regulator of MAP kinase activity. However, in this report we present several lines of evidence showing that integrin-mediated MAP kinase activity in fibroblasts is independent of FAK. First, a beta1 integrin subunit deletion mutant affecting the putative FAK binding site supports activation of MAP kinase in adhering fibroblasts but not tyrosine phosphorylation of FAK. Second, fibroblast adhesion to bacterially expressed fragments of fibronectin demonstrates that robust activation of MAP kinase can precede tyrosine phosphorylation of FAK. Finally, we have used FRNK, the noncatalytic COOH-terminal domain of FAK, as a dominant negative inhibitor of FAK autophosphorylation and of tyrosine phosphorylation of focal contacts. Using retroviral infection, we demonstrate that levels of FRNK expression sufficient to completely block FAK tyrosine phosphorylation were without effect on integrin-mediated activation of MAP kinase. These results strongly suggest that integrin-mediated activation of MAP kinase is independent of FAK and indicate the probable existence of at least two distinct integrin signaling pathways in fibroblasts.  相似文献   

9.
Previous work on the responses of mitogen-activated protein (MAP) kinase cascade components in a Xenopus oocyte extract system demonstrated that p42 MAP kinase (MAPK) exhibits a sharp, sigmoidal stimulus/response curve, rather than a more typical hyperbolic curve. One plausible explanation for this behavior requires the assumption that MAP kinase kinase (MAPKK) carries out its dual phosphorylation of p42 MAPK by a distributive mechanism, where MAPKK dissociates from MAPK between the first and second phosphorylations, rather than a processive mechanism, where MAPKK carries out both phosphorylations before dissociating. Here we have investigated the mechanism through which a constitutively active form of human MAPKK-1 (denoted MAPKK-1 R4F or MAPKK-1*) phosphorylates Xenopus p42 MAPK in vitro. We found that the amount of monophosphorylated MAPK formed during the phosphorylation reaction exceeded the amount of MAPKK-1* present, which would not be possible if the phosphorylation occurred exclusively by a processive mechanism. The monophosphorylated MAPK was phosphorylated predominantly on tyrosine, but a small proportion was phosphorylated on threonine, indicating that the first phosphorylation is usually, but not invariably, the tyrosine phosphorylation. We also found that the rate at which pulse-labeled monophosphorylated MAPK became bisphosphorylated depended on the MAPKK-1* concentration, behavior that is predicted by the distributive model but incompatible with the processive model. These findings indicate that MAPKK-1* phosphorylates p42 MAPK by a two-collision, distributive mechanism rather than a single-collision, processive mechanism, and provide a mechanistic basis for understanding how MAP kinase can convert graded inputs into switch-like outputs.  相似文献   

10.
The mitogen-activated protein kinase (MAP kinase) pathway is thought to play an important role in the actions of neurotrophins. A small molecule inhibitor of the upstream kinase activator of MAP kinase, MAP kinase kinase (MEK) was examined for its effect on the cellular action of nerve growth factor (NGF) in PC-12 pheochromocytoma cells. PD98059 selectively blocks the activity of MEK, inhibiting both the phosphorylation and activation of MAP kinases in vitro. Pretreatment of PC-12 cells with the compound completely blocked the 4-fold increase in MAP kinase activity produced by NGF. Half-maximal inhibition was observed at 2 microM PD98059, with maximal effects at 10-100 microM. The tyrosine phosphorylation of immunoprecipitated MAP kinase was also completely blocked by the compound. In contrast, the compound was without effect on NGF-dependent tyrosine phosphorylation of the pp140trk receptor or its substrate Shc and did not block NGF-dependent activation of phosphatidylinositol 3'-kinase. However, PD98059 completely blocked NGF-induced neurite formation in these cells without altering cell viability. These data indicate that the MAP kinase pathway is absolutely required for NGF-induced neuronal differentiation in PC-12 cells.  相似文献   

11.
12.
13.
IL-6 mediates growth of some human multiple myeloma (MM) cells and IL-6-dependent cell lines. Although three IL-6 signaling pathways (STAT1, STAT3, and Ras-dependent MAPK cascade) have been reported, cascades mediating IL-6-triggered growth of MM cells and cell lines are not defined. In this study, we therefore characterized IL-6 signaling cascades in MM cell lines, MM patient cells, and IL-6-dependent B9 cells to determine which pathway mediates IL-6-dependent growth. IL-6 induced phosphorylation of JAK kinases and gp130, regardless of the proliferative response of MM cells to this growth factor. Accordingly, we next examined downstream IL-6 signaling via the STAT3, STAT1, and Ras-dependent mitogen-activated protein kinase (MAPK) cascades. IL-6 triggered phosphorylation of STAT1 and/or STAT3 in MM cells independent of their proliferative response to IL-6. In contrast, IL-6 induced phosphorylation of Shc and its association with Sos1, as well as phosphorylation of MAPK, only in MM cells and B9 cells that proliferated in response to IL-6. Moreover, MAPK antisense, but not sense, oligonucleotide inhibited IL-6-induced proliferation of these cells. These data suggest that STAT1 and/or STAT3 activation may occur independently of the proliferative response to IL-6, and that activation of the MAPK cascade is an important distal pathway for IL-6-mediated growth.  相似文献   

14.
15.
Phosphatidylinositol 3-kinase (PI3-K) has been implicated as a signal-transducing component in interleukin-2 (IL-2)-induced mitogenesis. However, the function of this lipid kinase in regulating IL-2-triggered downstream events has remained obscure. Using the potent and specific PI3-K inhibitor, wortmannin, we assessed the role of PI3-K in IL-2-mediated signaling and proliferation in the murine T-cell line CTLL-2. Addition of the drug to exponentially growing cells resulted in an accumulation of cells in the G0/G1 phase of the cell cycle. Furthermore, wortmannin also partially suppressed IL-2-induced S-phase entry in G1-synchronized cells. Analysis of IL-2-triggered signaling pathways revealed that wortmannin pretreatment resulted in complete inhibition of IL-2-provoked p70 S6 kinase activation and also attenuated IL-2-induced MAP kinase activation at drug concentrations identical to those required for inhibition of PI3-K catalytic activity. Wortmannin also diminished the IL-2-triggered activation of the MAP kinase activator, MEK, but did not inhibit activation of Raf, the canonical upstream activator of MEK. These results suggest that a novel wortmannin-sensitive activation pathway regulates MEK and MAP kinase in IL-2-stimulated T lymphocytes.  相似文献   

16.
17.
18.
The insulin receptor substrate-1 (IRS-1) is the major intracellular substrate of insulin and insulin-like growth factor-I (IGF-I) receptor tyrosine kinase activity, and this protein has been found to be overexpressed in human hepatocellular carcinomas. IRS-1 contains several src homology 2 (SH2) binding motifs that interact following tyrosyl phosphorylation with SH2-containing proteins, and this interaction may be essential for transmitting the growth signal from the cell surface to the nucleus. We have previously reported that overexpression of IRS-1 may induce neoplastic transformation of NIH 3T3 cells. This study examines the role of two SH2-containing molecules, namely the Grb2 adapter and Syp tyrosine phosphatase proteins as important components of the cellular transforming activity of IRS-1. Mutations of tyrosine 897 in the YVNI motif (Y897F) and of tyrosine 1180 in the YIDL motif (Y1180F) reduced the intracellular interaction of IRS-1 with Grb2 and Syp proteins, respectively. Furthermore, a single mutation at either Phe-897 or Phe-1180 substantially but not completely reduced IGF-I-dependent transforming activity of IRS-1, whereas creation of a double mutation of both tyrosine residues (Y897F/Y1180F) strikingly attenuated the transforming activity of IRS-1. Stable expression of the IRS-1 mutant constructs in NIH 3T3 cells was associated with a lower level of activation of the mitogen-activated protein kinase kinase (MAPKK)/MAPK cascade following IGF-I stimulation compared with cells stably transfected with the "wild-type" IRS-1 gene. These results suggest that IRS-1-induced cellular transformation requires an interaction with both Grb2 and Syp signal transduction molecules since neither interaction alone appears to be required, and this event subsequently leads to activation of the MAPKK/MAPK cascade.  相似文献   

19.
Janus tyrosine kinase (JAK) has recently been linked to signal transduction by cytokine receptors of the hematopoietin family. We have recently described a 116-kDa tyrosine kinase (p116) present in interleukin-2 (IL-2) receptor complexes in human YT cells that showed functional characteristics of a JAK kinase. These included receptor association, rapid and transient tyrosine phosphorylation kinetics in response to ligand, and in vitro autophosphorylating tyrosine kinase activity (Kirken, R. A., Rui, H., Evans, G. A., and Farrar, W. L. (1993) J. Biol. Chem. 268, 22765-22770). Here we extend these observations by demonstrating structural homologies between IL-2-modulated p116 and prolactin-modulated JAK2 in the rat T cell line Nb2. These include similar net charge as determined by nonequilibrium pH gradient electrofocusing and related primary structure based upon phosphopeptide mapping of V8 protease-digested hyperphosphorylated proteins. This putative JAK kinase underwent marked tyrosine phosphorylation in response to IL-2, IL-4, and IL-7, lymphoid growth factors that use the common IL-2 receptor gamma-chain, but not in response to prolactin. Furthermore, polyclonal antisera to JAK1, JAK2, or tyrosine kinase 2 did not recognize either rat or human p116. However, we identified the IL-2-modulated p116 as the recently cloned novel leukocyte Janus kinase, L-JAK, using an antiserum to a peptide corresponding to the COOH terminus of human L-JAK.  相似文献   

20.
Aggregation of high affinity IgE Fc receptors (Fc epsilon RI) on RBL-2H3 cells results in tyrosine phosphorylation of 33-, 42-, 44-, 72-, 80-, 90-, 125-kDa proteins. The 42 and 44 kDa proteins were identified as mitogen-activated protein (MAP) kinases with immunoblotting of anti-MAP kinase antibody. The effects of an antiallergic drug, pemirolast potassium (TBX) on Ag-induced protein tyrosine phosphorylation and MAP kinase activation were investigated. When RBL-2H3 cells were stimulated with Ag in the presence of TBX, tyrosine phosphorylation of three proteins (33, 42 and 44 kDa) was inhibited concentration-dependently (0.1-10 micrograms/ml). Inhibition of Ag-induced tyrosine phosphorylation of 33 kDa protein, which could be a beta subunit of Fc epsilon RI, suggests that TBX may prevent the activation of Fc epsilon RI. TBX suppressed activation of MAP kinases (42 and 44 kDa) in response to Ag as well as phorbol myristate acetate (100 nM) or calcium ionophore A23187 (500 nM), implying that the drug acts on signal transduction component(s) between the second messengers and MAP kinases. However, TBX had no effects on protein tyrosine phosphorylation and MAP kinase activation in MC3T3-E1 osteoblastic cells. These results indicate that TBX may affect Fc epsilon RI and also may act as a step distal of Ca2+ mobilization and protein kinase C activation leading to MAP kinase activation in RBL-2H3 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号