首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
Interdigitated back contact silicon heterojunction (IBC‐SHJ) solar cells have the potential for high open circuit voltage (VOC) due to the surface passivation and heterojunction contacts, and high short circuit current density (JSC) due to all back contact design. Intrinsic amorphous silicon (a‐Si:H) buffer layer at the rear surface improve the surface passivation hence VOC and JSC, but degrade fill factor (FF) from an “S” shape JV curve. Two‐dimensional (2D) simulation using “Sentaurus device” demonstrates that the low FF is related to the valence band offset (energy barrier) at the hetero‐interface. Three approaches to the buffer layer are suggested to improve the FF: (1) reduced thickness, (2) increased conductivity, and/or (3) reduced band gap. Experimental IBC‐SHJ solar cells with reduced buffer thickness (<5 nm) and increased conductivity with low boron doping significantly improves FF, consistent with simulation. However, this has only marginal effect on efficiency since JSC and VOC also decrease due to poor surface passivation. A narrow band gap a‐Si:H buffer layer improves cell efficiency to 13.5% with unoptimized passivation quality. These results demonstrate that tailoring the hetero‐interface band structure is critical for achieving high FF. Simulations predicts that efficiences >23% are possible on planar devices with optimized pitch dimensions and achievable surface passivation, and 26% with light trapping. This work provides criterion to design IBC‐SHJ solar cell structures and optimize cell performance. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Gapless interdigitated back contact (IBC) solar cells were fabricated with phosphorous back surface field on a boron emitter, using an ion implantation process. Boron emitter (boron ion implantation) is counter doped by the phosphorus back surface field (BSF) (phosphorus ion implantation) without gap. The gapless process step between the emitter and BSF was compared to existing IBC solar cell with gaps between emitters and BSFs obtained using diffusion processes. We optimized the doping process in the phosphorous BSF and boron emitter region, and the implied Voc and contact resistance relationship of the phosphorous and boron implantation dose in the counter doped region was analyzed. We confirmed the shunt resistance of the gapless IBC solar cells and the possibility of shunt behavior in gapless IBC solar cells. The highly doped counter doped BSF led to a controlled junction breakdown at high reverse bias voltages of around 7.5 V. After the doping region was optimized with the counter doped BSF and emitter, a large‐area (5 inch pseudo square) gapless IBC solar cell with a power conversion efficiency of 22.9% was made.  相似文献   

3.
We have investigated the influence of diffusion temperature during phosphorus emitter diffusion from a spray‐on source on the performance of screen‐printed multicrystalline silicon solar cells. Because of the dual diffusion mechanism present at high concentration in‐diffusion of phosphorus in silicon, applying lower diffusion temperatures for a longer duration results in significantly enhanced penetration of the low concentration tail relative to the high concentration region. Moreover, we show that the sheet resistance of in‐diffused emitters from a high concentration source depends primarily on the extension of the high concentration region, thus significantly different emitter profiles can be manufactured without altering the sheet resistance considerably. Because of the enhanced tail penetration, emitters of a specified sheet resistance diffused at reduced temperatures can result in higher fill factors of screen‐printed solar cells due to diminution of Schottky type shunts. Furthermore, emitters diffused at lower temperatures for longer durations can yield a higher gettering efficiency, resulting in increased bulk recombination lifetime, and thus a higher internal quantum efficiency at long wavelengths. The deeper tail extension of low temperature emitters, however, causes increased absorption within the highly recombinative emitter, resulting in current losses due to a lower internal quantum efficiency at short wavelengths. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper a promising solution for the notorious problem of manufacturing a stable low ohmic back contact of a CdTe thin film superstrate solar cell is presented without using elemental copper. Instead we have used a Cu2O layer inserted between the CdTe absorber and metal contact (Au). In contrast to the barrier free band alignment gained by using the transitivity rules, XPS measurements show a barrier in the valence band of the Cu2O layers directly after deposition, which results in a low performing JV curve. The contact can be improved by a short thermal treatment resulting in efficiencies superior to copper based contacts for standard CdS/CdTe hetero junction solar cells prepared on commercial glass/FTO substrates. By replacing the CdS window layer with a CdS:O buffer layer efficiencies of >15% could be achieved. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Until this day, the most efficient Cu(In,Ga)Se2 thin film solar cells have been prepared using a rather complex growth process often referred to as three‐stage or multistage. This family of processes is mainly characterized by a first step deposited with only In, Ga and Se flux to form a first layer. Cu is added in a second step until the film becomes slightly Cu‐rich, where‐after the film is converted to its final Cu‐poor composition by a third stage, again with no or very little addition of Cu. In this paper, a comparison between solar cells prepared with the three‐stage process and a one‐stage/in‐line process with the same composition, thickness, and solar cell stack is made. The one‐stage process is easier to be used in an industrial scale and do not have Cu‐rich transitions. The samples were analyzed using glow discharge optical emission spectroscopy, scanning electron microscopy, X‐ray diffraction, current–voltage‐temperature, capacitance‐voltage, external quantum efficiency, transmission/reflection, and photoluminescence. It was concluded that in spite of differences in the texturing, morphology and Ga gradient, the electrical performance of the two types of samples is quite similar as demonstrated by the similar J–V behavior, quantum spectral response, and the estimated recombination losses. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Using thinner wafers can largely reduce the cost of silicon solar cells. One obstacle of using thinner wafers is that few methods can provide good dopant concentration for the back surface field (BSF) and good ohmic contact while generated only in low bowing. In this paper, we have demonstrated the screening–printing B and Al (B/Al) mixture metallization film technique, making use of the screen‐printing technique and the higher solubility of B in silicon to form a B/Al‐BSF. This technique can raise the carrier concentration in the BSF by more than one order of magnitude and reduce the back surface recombination at a low firing temperature (≤800 °C). We have also shown that through the new technique, the metallization paste thickness at the rear could be reduced largely, which however did not degrade the solar cell efficiency. All these efforts are aiming for pushing forward the application of thinner wafers. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Analytical modeling of p‐i‐n solar cells constitutes a practical tool to extract material and device parameters from fits to experimental data, and to establish optimization criteria. This paper proposes a model for p‐i‐n solar cells based on a new approximation, which estimates the electric field taking into account interface potential drops at the intrinsic‐to‐doped interfaces. This leads to a closed‐form current/voltage equation that shows very good agreement with device simulations, revealing that the inclusion of the interface potential drops constitutes a major correction to the classical uniform‐field approach. Furthermore, the model is able to fit experimental current/voltage curves of efficient nanocrystalline Si and microcrystalline Si p‐i‐n solar cells under illumination and in the dark, obtaining material parameters such as mobility‐lifetime product, built‐in voltage, or surface recombination velocity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Cu(In,Ga)Se2 (CIGS) thin films co‐evaporated by 1‐stage, 2‐stage, and 3‐stage processes have been studied by spectroscopic ellipsometry (SE). The disappearance of a Cu2‐xSe optical signature, detected by real time SE during multistage CIGS, has enabled precise endpoint control. Band gap energies determined by SE as depth averages show little process variation for fixed [Ga]/([In] + [Ga]) atomic ratio, whereas their broadening parameters decrease with increasing number of stages, identifying successive grain size enhancements. Refined SE analysis has revealed band gap profiling only for 3‐stage CIGS. Solar cells incorporating these absorbers have yielded increased efficiencies in correlation with phase control, grain size, and band gap profiling. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号