首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
Though glycidyl azide polymer (GAP) is a well‐known and promising energetic polymer, propellants based on it suffer from poor mechanical and low‐temperature properties. To overcome these problems, plasticized GAP‐based copolymeric binders were prepared and investigated through the incorporation of flexible‐structural polyethylene glycol (PEG) and polycaprolactone (PCL) into a binder recipe under a Desmodur N‐100 polyisocyanate (N‐100)/isophorone diisocyanate (IPDI) (2 : 1, wt. ratio) mixed curative system. The nitrate esters (NEs) or GAP oligomer were used as energetic plasticizers at various ratios to the polymers. The GAP/PCL binders held the plasticizers much more than the GAP/PEG binders did. The glass transition temperatures (Tg) of segmented copolymeric binders were more dependent on the plasticizer level than the PEG or PCL content. The increase in the plasticizer content decreased the mechanical strength and modulus of binders, while the change of strain was modest. Finally, the NE plasticized GAP‐based solid propellants showed enhanced mechanical and thermal properties by the incorporation of PEG or PCL. The properties of GAP/PCL propellants were superior to those of GAP/PEG propellants.  相似文献   

2.
The development of energetic binders with suitable energetic plasticizers is required to enhance the mechanical properties and to reduce the glass transition temperature of propellant and explosive formulations. The compatibility of the energetic binder poly(3‐nitratomethyl‐3‐methyloxetane) (polyNIMMO) with five different energetic plasticizers viz. bis(2,2‐dinitro propyl)acetal (BDNPA), dinitro‐diaza‐alkanes (DNDA‐57), 1,2,4‐butanetriol trinitrate (BTTN), NN‐butyl‐N ‘(2‐nitroxy‐ethyl) nitramine (BuNENA) and diethyleneglycoldinitrate (DEGDN) was studied by differential scanning calorimetry (DSC), rheology, and DFT methods. The results obtained for the pure binder were compared with the results obtained for the binder/plasticizer blend in regard of the decomposition temperature and the format of the peak indicated the compatibility of polyNIMMO with the plasticizers. The glass transition temperatures of the blends were determined by low temperature DSC and showed desirable lowering of glass transition temperature with single peak. The rheological evaluation revealed that the viscosity of the binder is considerably lowered by means of flow behavior upon addition of 20 % (w/w) plasticizer. The addition of BuNENA and DEGDN has maximum effect on the lowering of viscosity of polyNIMMO. The predicted relative trend of interaction energies between plasticizer and binder is well correlated with the corresponding trend of viscosity of binder/plasticizer blends. These experimental studies verified by theoretical methods are valuable to design practical blends of new plasticizers and binders.  相似文献   

3.
Different carboxylic acid derivatives of 2,2‐dinitropropane‐1,3‐diol (DNPD) and 2,2‐bis(azidomethyl)propane‐1,3‐diol (BAMP) were synthesized to investigate their suitability as energetic plasticizers. The syntheses were carried out using acyl chlorides of acetic, propionic, and butyric acid. The obtained products were characterized by elemental analysis, NMR, and IR spectroscopy. The energetic properties of the synthesized compounds were calculated on the basis of the computed heats of formation at the CBS‐4M level of theory using the EXPLO5 version 6.02 computer code. Investigations of physical stabilities were carried out using BAM drop hammer and friction tester. Low and high temperature behavior was determined by differential scanning calorimetry (DSC). The energetic and physical properties of the synthesized compounds were compared to the literature known energetic plasticizers N‐butyl nitratoethylnitramine (BuNENA) and diethylene glycol bis(azidoacetate) ester (DEGBAA). For analyzing the plasticizing abilities, mixtures of glycidyl azide polymer (GAP) and poly(3‐nitratomethyl‐3‐methyloxetan) (polyNIMMO) were prepared with both propionyl based compounds in different ratios and investigated regarding their glass transition temperatures and viscosity. Both compounds showed plasticizing effects in the range of BuNENA.  相似文献   

4.
以聚双叠氮甲基氧杂环丁烷(PBAMO)为硬段,聚缩水甘油醚(GAP)为软段,采用一锅法扩链合成了含能聚氨酯黏合剂(GAP/PBAMO).实验中合成了不同硬段含量的黏合剂,并采用FT-IR、NMR、GPC、XRD、DSC和SEM等对其结构和性能进行了表征.结果表明,硬段质量分数为66.7%时,该热塑性黏合剂具有较好的耐热...  相似文献   

5.
Traditional composite rocket propellants are cured by treatment of hydroxyl‐terminated prepolymers with polyfunctional aliphatic isocyanates. For development of smokeless composite propellants containing nitramines and/or ammonium dinitramide (ADN), energetic binder systems using glycidyl azide polymer (GAP) are of particular interest. Polyfunctional alkynes are potential isocyanate‐free curing agents for GAP through thermal azide‐alkyne cycloaddition and subsequent formation of triazole crosslinkages. Propargyl succinate or closely related aliphatic derivatives have previously been reported for such isocyanate‐free curing of GAP. Herein, we present the synthesis and use of a new aromatic alkyne curing agent, the crystalline solid bisphenol A bis(propargyl ether) (BABE), as isocyanate‐free curing agent in smokeless propellants based on GAP, using either octogen (HMX) and/or prilled ADN as energetic filler materials. Thermal and mechanical properties, impact and friction sensitivity and ballistic characteristics were evaluated for these alkyne cured propellants. Improved mechanical properties could be obtained by combining isocyanate and alkyne curing agents (dual curing), a combination that imparted better mechanical properties in the cured propellants than either curing system did individually. The addition of a neutral polymeric bonding agent (NPBA) for improvement of binder‐filler interactions was also investigated using tensile testing and dynamic mechanical analysis (DMA). It was verified that the presence of isocyanates is essential for the NPBA to improve the mechanical properties of the propellants, further strengthening the attractiveness of dual cure systems.  相似文献   

6.
叠氮增塑剂与GAP黏合剂的相容性模拟计算   总被引:1,自引:0,他引:1  
叠氮含能化合物在提高推进剂能量、改善燃烧性能、降低特征信号等方面优势明显,研究叠氮增塑剂与GAP的相容性可以促进叠氮含能化合物在推进剂中的应用。对6种叠氮含能化合物的生成热、玻璃化转变温度等进行了计算分析,探讨了它们作为含能增塑剂的使用性能。通过分子动力学模拟,发现6种叠氮化合物对内聚能密度和溶解度参数的贡献以范德华作用力为主,其贡献值约为静电力贡献值的1.03.0倍。计算得到的目标叠氮化合物的溶解度参数与分子结构中的极性基团存在一定的正相关性,即极性基团含量越高,溶解度参数值越大。模拟模型中N100在GAP中的混溶均匀性都没有IPDI和MDI好,但GAP/N100、GAP/IPDI、GAP/MDI的溶解度参数均与纯GAP的相近。叠氮增塑剂DEGBAA与GAP、GAP/N100、GAP/IPDI、GAP/MDI之间的互溶性较理想,PEAA和TMNTA次之。DEGBAA的Tg和黏度都较低,更适合作GAP基推进剂的含能增塑剂。  相似文献   

7.
Bis‐propargylhydroquinone (BPHQ) is an alkyne functionalized isocyanate‐free curing agent for hydroxyl terminated azido polymers. Conventionally, glycidyl azide polymer (GAP) is cured by isocyanate based curatives, which are toxic and hygroscopic in nature. The reaction between hydroxyl end group of GAP and isocyanate is highly sensitive to moisture causing voids in the propellant, leading to poor mechanical properties. Herein, an alternate approach was adapted to exploit 1,3‐dipolar cycloaddition reaction between azido group of GAP and the triple bond (–C≡CH) of BPHQ without catalyst at 50 °C forming triazole crosslinked polymer. The curing behavior of GAP‐BPHQ system was studied by rheological method and based on the results the gel time was determined. In addition, the reaction between GAP and BPHQ was carried out with various GAP/BPHQ ratios (0.9 to 2.5) and effects on mechanical properties of resulting triazole polymers were investigated. Post curing hardness of GAP‐BPHQ binder system was tested by surface Shore‐A hardness measurement. The compatibility of BPHQ with energetic oxidizers such as ammonium dinitramide (ADN) and hydrazinium nitroformate (HNF) were also studied by differential scanning calorimetery (DSC) technique and showed good compatibility. The activation energy (E a) of cured GAP‐BPHQ binder was evaluated by DSC using Ozawa and Kissinger methods and are found to be 33.55 and 33.16 kcal mol–1, respectively. The advantage of this curing system between GAP and BPHQ is unaffected by moisture as compared to isocyanate based urethane systems and also no need to control humidity during the processing of propellant. The experimental results reveal that triazole crosslinked polymer system could be a better choice to develop novel energetic binder systems for explosives as well as propellants composition with improved performance and eco‐friendly nature.  相似文献   

8.
To simultaneously improve the fracture toughness and heat resistance of a cured toughened epoxy resin along with a reduction in its viscosity during the mixing process, two novel polysulfone‐type polymers are synthesized via azide–alkyne polymerization for use as toughening agents. The epoxy resin toughened with these polymers by in situ azide–alkyne polymerization during the cure process, which shows excellent processibility and based on the significantly lower viscosity (61 and 62 cP) during epoxy mixing process than that of commonly commercial polyethersulfone (PES, 127,612 cP). The novel polysulfone‐type polymer toughened epoxy resin showed the advantage in excellent fracture toughness than the PES toughened epoxy. In addition, the glass transition temperature of the novel polysulfone‐type polymer toughened epoxy resin is similar to that of the neat one (~230 °C) and does not decrease, which implies excellent heat resistance of the toughened epoxy. These phenomena can be attributed to the formation of semi‐interpenetrating polymer networks comprising the epoxy network and the linear polysulfone‐type polymers. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45790.  相似文献   

9.
A kind of glycidyl azide polymer (GAP)-based composite has been fabricated using propargyl-terminated ethylene oxide-tetrahydrofuran copolymer (PPET) with two (p-) and three (t-) alkyne functionalities via Huisgen reaction. Independent upon the PPET functionality, both crosslink densities and mechanical properties for two GAP/PPET systems showed a positive-interrelation changes of initial increase and subsequent decrease with an increase of azide/alkyne molar ratios. At equivalent of azide/alkyne molar ratios, the composites containing t-PPET with higher alkyne functionality exhibited better mechanical properties, while those with two alkyne functionality presented lower glass transition. Under the regulation of alkyne functionality as 3 and azide/alkyne molar ratio as 3:1, the tensile strength, Young's modulus and breaking elongation could simultaneously reach the maximum values of 1.38 MPa, 4.07 MPa, and 122.5%, which was ascribed to optimal participation of azide/alkyne reaction into network construction. Overall, this study provides an additional optimization route for network-structured binders in solid propellant system. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48016.  相似文献   

10.
Composite rocket propellants prepared from nitramine fillers (RDX or HMX), glycidyl azide polymer (GAP) binder and energetic plasticizers are potential substitutes for smokeless double‐base propellants in some rocket motors. In this work, we report GAP‐RDX propellants, wherein the nitramine filler has been partly or wholly replaced by 1,1‐diamino‐2,2‐dinitroethylene (FOX‐7). These smokeless propellants, containing 60% energetic solids and 15% N‐butyl‐2‐nitratoethylnitramine (BuNENA) energetic plasticizer, exhibited markedly reduced shock sensitivity with increasing content of FOX‐7. Conversely, addition of FOX‐7 reduced the thermochemical performance of the propellants, and samples without nitramine underwent unsteady combustion at lower pressures (no burn rate catalyst was added). The mechanical characteristics were quite modest for all propellant samples, and binder‐filler interactions improved slightly with increasing content of FOX‐7. Overall, FOX‐7 remains an attractive, but less than ideal, substitute for nitramines in smokeless GAP propellants.  相似文献   

11.
4,4′‐Diisocyanato diphenylmethane (MDI)‐based polyurethanes melt and start to burn at 150–200 °C. Mainly H2O, CO2, CO, HCN, and N2 are formed. The new modified polyurethane shows a different pyrolysis behavior. GAP‐diol (glycidyl azide polymer), which was used as a modifying agent, is a well‐known energetic binder with a high burning velocity and a very low adiabatic flame temperature. The modified polyurethane starts to burn at approximately 190 °C because of the emitted burnable gases, but it does not melt. The PU foam shrinks slightly and a black, solid, carbon‐rich hybrid foam remains. TGA and EGA‐FTIR revealed a three‐step decomposition mechanism of pure GAP‐diol, the isocyanate‐GAP‐diol, and PU‐GAP‐diol formulations. The first decomposition step is caused by an exothermic reaction of the azido group of the GAP‐diol. This decomposition reaction is independent of the oxygen content in the atmosphere. In the range of 190–240 °C the azido group spontaneously decomposes to nitrogen and ammonia. This decomposition is assumed to take place partly via the intermediate hydrogen azide that decomposes spontaneously to nitrogen and ammonia in the range of 190–240 °C. The second decomposition step was attributed to the depolymerization of the urethane and bisubstituted urea groups. The third decomposition step in the range of 500–750 °C was attributed to the carbonization process of the polymer backbone, which yielded solid, carbon‐rich hybrid foams at 900 °C. In air, the second and the third decomposition step shifted to lower temperatures while no solid carbon hybrid foam was left. Samples of PU‐GAP‐diol, which were not heated by a temperature program but ignited by a bunsen burner, formed a similar carbon‐rich hybrid foam. It was therefore concluded that the decomposition products of the hydrogen azide, ammonia and mainly nitrogen act as an inert atmosphere. FTIR, solid‐state 13C‐NMR, XRD, and heat conductivity measurements revealed a high content of sp2‐hybridized, aromatic structures in the hybrid foam. The carbon‐rich foam shows a considerable hardness coupled with high temperature resistance and large specific surface area of 2.1 m2⋅g−1.  相似文献   

12.
Glycidyl azide polymer (GAP) was cured through “click chemistry” by reaction of the azide group with bispropargyl succinate (BPS) through a 1,3‐dipolar cycloaddition reaction to form 1,2,3‐triazole network. The properties of GAP‐based triazole networks are compared with the urethane cured GAP‐systems. The glass transition temperature (Tg), tensile strength, and modulus of the system increased with crosslink density, controlled by the azide to propargyl ratio. The triazole incorporation has a higher Tg in comparison to the GAP‐urethane system (Tg−20 °C) and the networks exhibit biphasic transitions at 61 and 88 °C. The triazole curing was studied using Differential Scanning Calorimetry (DSC) and the related kinetic parameters were helpful for predicting the cure profile at a given temperature. Density functional theory (DFT)‐based theoretical calculations implied marginal preference for 1,5‐addition over 1,4‐addition for the cycloaddition between azide and propargyl group. Thermogravimetic analysis (TG) showed better thermal stability for the GAP‐triazole and the mechanism of decomposition was elucidated using pyrolysis GC‐MS studies. The higher heat of exothermic decomposition of triazole adduct (418 kJ ⋅ mol−1) against that of azide (317 kJ ⋅ mol−1) and better mechanical properties of the GAP‐triazole renders it a better propellant binder than the GAP‐urethane system.  相似文献   

13.
叠氮类含能粘合剂研究进展   总被引:2,自引:0,他引:2  
罗运军  葛震 《精细化工》2013,30(4):374-377,438
粘合剂含能化是火炸药未来的发展方向,叠氮类粘合剂是含能粘合剂中的典型代表。该文主要从热塑性含能粘合剂和热固性含能粘合剂两方面综述了近5年叠氮类粘合剂研究进展,并对该类粘合剂的发展趋势和应用前景进行了展望。  相似文献   

14.
Differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) were used to investigate the thermal behavior of glycidyl azide polymer (GAP) and GAP‐based binders, which are of potential interest for the development of high‐performance energetic propellants. The glass transition temperature (Tg) and decomposition temperature (Td) of pure GAP were found to be −45 and 242°C, respectively. The energy released during decomposition (ΔHd) was measured as 485 cal/g. The effect of the heating rate on these properties was also investigated. Then, to decrease its Tg, GAP was mixed with the plasticizers dioctiladipate (DOA) and bis‐2,2‐dinitropropyl acetal formal (BDNPA/F). The thermal characterization results showed that BDNPA/F is a suitable plasticiser for GAP‐based propellants. Later, GAP was crosslinked by using the curing agent triisocyanate N‐100 and a curing catalyst dibuthyltin dilaurate (DBTDL). The thermal characterization showed that crosslinking increases the Tg and decreases the Td of GAP. The Tg of cured GAP was decreased to sufficiently low temperatures (−45°C) by using BDNPA/F. The decomposition reaction‐rate constants were calculated. It can be concluded that the binder developed by using GAP/N‐100/BDNPA/F/DBTDL may meet the requirements of the properties that makes it useful for future propellant formulations. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 538–546, 2000  相似文献   

15.
In this article, the structurally well‐defined dinuclear complex copper(I) acetate was studied in detail and was developed as a highly practical and efficient catalyst for the copper(I)‐catalyzed azide‐alkyne cycloaddition. The “bare” phenylethynylcopper(I) (i.e., with no exogeneous ligands) was isolated as an intermediate, which can be converted into an active catalytic species by treatment with acetic acid (in situ produced in the reaction) to efficiently catalyze the azide‐alkyne cycloaddition under mild conditions.  相似文献   

16.
A novel polyurethane material containing zwitterionic sulfobetaine groups has been synthesized using the copper‐catalyzed 1,3‐dipolar cycloaddition (azide‐alkyne click chemistry). A standard two‐step polyaddition method was used to produce the well‐defined polyurethane based on polycarbonatediol (PCDL) with alkyne groups. These polyurethanes containing alkyne units were then efficiently clicked using 3‐((2‐azidoethyl)dimethylammonio)propane‐1‐sulfonate (DMPS‐N3). The novel PU material was characterized by 1H NMR, Fourier transform infrared (FTIR) spectrometer, gel permeation chromatography (GPC), elemental analysis, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). This facile “click” reaction provides a useful tool for the development of novel functional polyurethanes for biomedical applications. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
Poly(?‐caprolactone)diol (PCL)–functionalized nanodiamonds (f‐NDs) were synthesized using a click chemistry reaction between the azide‐moiety PCL and alkyne‐moiety NDs and were incorporated into shape memory polyurethane (PU) at f‐ND concentrations of 0, 0.5, 1, and 2 wt % to produce high‐performance shape memory nanocomposites. The PU/f‐ND nanocomposites exhibited better shape recovery, shape recovery stress, and breaking stresses than pure PU. Shape recovery of greater than 95% was demonstrated for all the nanocomposites in the third cycle, and the shape recovery stresses increased significantly with the f‐ND content. These enhanced mechanical and shape recovery properties are ascribed to increased interactions between the f‐NDs and PU matrix due to incorporation of click‐coupled f‐NDs. The click‐coupled NDs can be used as nanofillers to enhance the mechanical and shape memory properties of polymers. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45465.  相似文献   

18.
Monolithic energetic gels were prepared in acetone by separately cross‐linking the single precursors, glycidyl azide polyol (GAP polyol polyol), nitrocellulose (NC, 12% N), and tris(hydroxymethyl)nitromethane (THMNM) and the mixed precursors (GAP polyol+NC) and (GAP polyol+THMNM) with hexamethylene diisocyanate (HDI). THMNM functions as a chain extender. The synthesis conditions were optimized according to precursor mass ratio, cross‐linking agent, solvent, catalyst concentration, and containers with various surface‐to‐volume ratios. The concentrations of reactants and cure catalyst are the most important factors. The composite energetic materials with a high degree of homogeneity were synthesized by trapping hexanitrohexazaisowurtzitane (CL‐20) on the nano scale in the energetic polymer gels using sol gel processing with a modified freeze‐drying procedure. Loadings up to 85%, 93%, and 90% by weight of CL‐20 yielded, respectively, monolithic gels for GAP/HDI, NC/HDI, and THMNM/HDI. 90% CL‐20 can be loaded into gels of the mixed precursors of (GAP polyol+NC) and (GAP polyol+THMNM). The energetic gels and composites were characterized using FT‐IR spectroscopy, DSC, SEM, and sensitivity to drop weight impact. The sensitivity of CL‐20 is reduced in the energetic nanocomposites.  相似文献   

19.
Lately, copper‐assisted azide–alkyne cycloaddition (CuAAC) has become a very interesting tool for synthesizing biocompatible polymer‐based materials such as hydrogels or microgels, which can be used as biomaterials for tissue engineering and drug delivery. Novel poly(2‐hydroxyethyl aspartamide)s (PHEAs) functionalized with pendent acetylene or azide groups were prepared from polysuccinimide, which is the thermal polycondensation product of aspartic acid, through successful ring‐opening reactions using propargylamine, 1‐azido‐2‐aminoethane and ethanolamine. The composition of the prepared copolymers was analyzed using 1H NMR spectroscopy. Clickable PHEA derivatives were crosslinked by mixing together in water with a catalyst system of Cu(I) and N, N, N′, N′, N″‐pentamethyldiethylenetriamine, a type of Huisgen's 1,3‐dipolar azide‐alkyne cycloaddition. The reaction of the polymers resulted in a chemoselective coupling between alkynyl and azido functional groups with multiple formation of triazole crosslinks to give hydrogels. The triazole linkages in the hydrogels are highly stable and may also play a role in swelling behavior. PHEA‐based hydrogels were also obtained by the crosslinking of azide‐ or alkyne‐modified PHEA with a small‐molecule crosslinker. The hydrogels prepared using these two methods were characterized by their degree of swelling and the morphology of the hydrogels was confirmed using scanning electron microscopy. The approach we describe here presents a promising alternative to common chemical hydrogel preparation techniques, and these hydrogels seem to possess structures having potential for a variety of industrial and biomedical applications. © 2012 Society of Chemical Industry  相似文献   

20.
Heats of combustion and formation of various energetic thermoplastic elastomers (ETPE), corresponding to linear copolyurethanes based on an energetic prepolymer and a diisocyanate, were measured by a calorimetric method. These ETPEs were synthesized from three different molecular weights of glycidyl azide polymer, from poly(3‐nitratomethyl‐3‐methyloxetane) and from poly glycidyl nitrate. The prepolymers were also analyzed for comparison with the corresponding ETPEs. A significant difference of the heats of formation was observed between the prepolymers and their ETPEs, while the heats of combustion were similar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号