首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Delamination mechanisms in continuous fiber reinforced composites were investigated. The concept of controlled interlaminar bonding (CIB) is proposed as a guideline for preparing fiber-epoxy composite laminates with enhanced fracture toughness without significant degradation in strength properties. The interlaminar bonding was manipulated by several specialized techniques including insertion of delamination promotors and surface modification of laminae. Results indicated that the plane-strain fracture toughness of E-glass-epoxy laminates could be improved by inserting perforated interlaminar films of aluminum, paper, polyester and polyimide, and fabrics. Such interlayers were used to promote delamination which dissipate strain energy by blunting and diverting a propagating crack. The fracture resistance of a laminate was found to be dependent on the degree of delamination. The competition between the growth of delamination cracks and the propagation of a main crack is controlled by the relative magnitude of the interlaminar bonding strength and the lamina cohesive strength. The interlaminar bonding is controlled by the degree of interlayer perforation and the adhesion between interlayer and lamina. The loading direction was found to be very important in dictating the failure processes. Experimental results from several composite systems are presented and discussed along with post-failure analysis data.  相似文献   

2.
The use of interlaminar fracture tests to measure the delamination resistance of unidirectional composite laminates is now widespread. However, because of the frequent occurrence of fiber bridging and multiple cracking during the tests, it leads to artificially high values of delamination resistance, which will not represent the behavior of the laminates. Initiation fracture from the crack starter, on the other hand, does not involve bridging, and should be more representative of the delamination resistance of the composite laminates. Since there is some uncertainty involved in determining the initiation value of delamination resistance in mode I tests in the literature, a power law of the form GIC= A · Δ ab (where GIC is mode I interlaminar fracture toughness and Δ a is delamination growth) is presented in this paper to determine initiation value of mode I interlaminar fracture toughness. It is found that initiation values of the mode I interlaminar fracture toughness. GICini, can be defined as the GIC value at which 1 mm of delamination from the crack starter has occurred. Examples of initiation values determined by this method are given for both carbon fiber reinforced thermoplastic and thermosetting polymers.  相似文献   

3.
Procedures for measuring the crack initiation and arrest toughnesses in Mode II interlaminar fracture in composite materials were analyzed. Different techniques using flexural specimens were studied. The strain energy release rate, G, which is the energy available for crack propagation was calculated using simple beam theory. The calculation takes into account the transverse shear effect. Stable and unstable fractures are analyzed, and conditions required to measure the arrest toughness of interlaminar fracture are discussed. The methodology was applied to the measurement of fracture energy at the onset and arrest of delamination in glass/epoxy laminate.  相似文献   

4.
The low‐velocity impact behavior of a continuous glass fiber/polypropylene composite was investigated. Optical microscopy and ultrasonic scanning were used to determine the impact‐induced damage. At low impact energy, the predominant damage mechanism observed was matrix cracking, while at high energy the damage mechanisms observed were delamination, plastic deformation, which produced a residual specimen curvature, and a small amount of fiber breakage at the edge of the indentation on the impacted face of the specimens. The impact load vs. time signals were recorded during impact and showed that the load corresponding to the onset of delamination was independent of the impact energy in the range tested. The load at which the onset of delamination occurred corresponded to the values obtained by performing a linear regression of the delaminated area, obtained by ultrasonic scanning, as a function of the impact force. Tensile and flexural tests performed on impacted specimens showed that the tensile and flexural residual strengths and the flexural modulus decreased with increasing incident impact energy, while the post‐impact residual tensile modulus remained constant. The dynamic interlaminar fracture toughness was evaluated from the critical dynamic (impact) strain energy release rate of specimens with a delamination simulated by an embedded insert. The results are compared with the interlaminar fracture toughness values obtained during subcritical steady crack growth.  相似文献   

5.
A fracture mechanics delamination cracking model has been developed for brittle-matrix composite laminates. The near-tip mechanics is discussed in the context of material orthotropy and composite material inhomogeneities. A fracture mechanics framework based on the near-tip energy release rate and the associated phase angle Ψ has been adopted. In the case of steady-state delamination cracking in a prenotched cross-ply symmetric laminated beam, analytical expressions for the steady-state energy release rate, ss, have been obtained for the combined applied loading of an axial force and a bending moment. Parameter studies assessing the effects on ss of load coupling, crack location, and lamination morphology which includes the total number of layers, layer thickness, and material properties are presented. Thus, composite homogenization criteria with respect to the total number of layers placed along the beam height can be obtained for a wide range of material selection. The associated phase angle Ψ at the delamination crack tip is discussed in the context of existing solutions. The analysis has been developed based on a theory for structural laminates. The delamination model can be used in conjunction with experimental data obtained from model geometries to extract the mixed-mode transverse composite fracture toughness. Thus, conditions for stable delamination crack growth can be established and design criteria based on toughness for composite laminates and composite fasteners can be obtained.  相似文献   

6.
To investigate the effects of environmental temperature on fracture behavior of a polyetherimide (PEI) thermoplastic polymer and its carbon fiber (CF/PEI) composite, experimental and numerical studies were performed on compact tension (CT) and double cantilever beam (DCB) specimens under mode‐I loading. The numerical analyses were based on 2‐D large deformation finite element analyses (FEA). Elevated temperatures greatly released the crack tip triaxiality (constraint) and promoted matrix deformation due to low yield strength and enhanced ductility of the PEI matrix, which resulted in the greater plane‐strain fracture toughness of the bulk PEI polymer and the interlaminar fracture toughness of its composite during delamination propagation with increasing temperature. Furthermore, the high triaxiality was developed around the delamination front tip in the DCB specimen, which accounted for the poor translation of matrix toughness to the interlaminar fracture toughness by suppressing the matrix deformation and reducing the plastic energy dissipated in the plastic zone. Especially, at delamination initiation, the weakened fiber/matrix adhesion at elevated temperatures led to premature failure of fiber/matrix interface, suppressing matrix deformation and preventing the full utilization of matrix toughness. Consequently, low interlaminar fracture toughness was obtained at elevated temperatures. POLYM. COMPOS., 26:20–28, 2005. © 2004 Society of Plastics Engineers.  相似文献   

7.
An experimental investigation was conducted to identify the failure mechanism and to understand damage propagation in compression-loaded composite structures. The tests were conducted on several laminates of different ply orientation with thicknesses that ranged from 0.56 to 0.79 cm. The panels were damaged by 1.27-cm-diameter aluminum spheres propelled normal to the specimen surface at velocities ranging from 30 m/s to 140 m/s. Results indicate that there is significant internal laminate damage due to low-velocity impact with no surface damage. The internal damage consists of delamination and intraply cracking. Three damage propagation modes were identified as causing specimen failure; delamination, axial load-lateral deformation coupling, and local shear failure.  相似文献   

8.
The effect of polyurethane on the mechanical properties and Mode I and Mode II interlaminar fracture toughness of glass/epoxy composites were studied. Polyurethanes (PU) synthesized using polyols and toluene diisocyanate were employed as modifier for epoxy resin by forming interpenetrating polymer network. The PU/Epoxy IPN was used as matrix material for GFRP. PU modified epoxy composite laminates having varying PU contents were prepared. The effect of PU content on the mechanical properties like interlaminar fracture toughness (Mode I, G1c and Mode II, GIIc), tensile strength, flexural strength, and Izod impact strength were studied. The morphological studies were conducted on the fractured surface of the composite specimen by scanning electron microscopy (SEM). Tensile strength, flexural strength, and impact strength of PU‐modified epoxy composite laminates were found to increase inline with interlaminar fracture toughness (G1c and GIIc) with increasing PU content to a certain limit and then it was found to decrease with increase in PU content. It was observed that toughening of epoxy with PU increases the Mode I and Mode II delamination toughness up to 17 and 120% higher than that of untoughened composite specimen, respectively. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

9.
为了改善碳纤维/环氧树脂(CF/EP)层合板层间断裂韧性较差的问题,采用预浸料层间涂层和模压工艺制备聚醚醚酮(PEEK)层间增韧CF/EP层合板。探究PEEK含量对CF/EP层合板Ⅱ型层间断裂韧性和冲击强度的影响。结果表明:PEEK的加入有效提高CF/EP层合板的Ⅱ型层间断裂韧性和冲击强度。当PEEK含量为2%,层合板的断裂韧性和冲击强度分别达到1 253 J/m2和259 kJ/m2,与纯层合板相比分别提高61.5%和32.8%。实验分析PEEK增韧机理,为研究高附加值复合材料产品提供参考。  相似文献   

10.
This paper reports both experimental and numerical investigations on delamination mechanisms in [05, 905, 05] carbon fiber(CF)/poly(etheretherketone) (PEEK) laminate subjected to low-velocity impact. It was found that the CF/PEEK composite exhibits the same damage mechanisms as epoxy-based composites, but superior delamination resistance. For the crossply laminate, the impact delamination results from a Mode II interlaminar fracture process, and a close association exists between the interlaminar shear stress field and the delamination growth. The prediction of impact-induced delamination sizes is discussed.  相似文献   

11.
The mechanical properties of three dimensional stitched composites were compared against those of the traditional two dimensional laminates. An attempt was made to correlate the change in properties to the change in the third directional fiber density. Tests conducted were the impact, three-point bending, damage tolerance, end notched flexure, and bending fatigue test. The results of these tests show that the third directional fibers can effectively inhibit delamination by increasing the interlaminar shear strength. Three dimensional composites also possess better damage tolerance, fracture toughness, and fatigue life. However, a high stitching density can degrade the in-plane properties of the composites.  相似文献   

12.
针对碳纤维复合材料层合板面内压缩损伤问题,基于声发射技术分析不同损伤阶段的声发射信号特征。根据加载过程中时间–载荷曲线以及试样破坏断面微观形貌,将损伤过程分为三个阶段:初始损伤阶段主要产生少量基体开裂与纤维–基体界面脱粘,裂纹迅速扩展阶段开始产生纤维剪断以及失稳变形,平稳损伤阶段主要产生失稳变形以及分层裂纹扩展。结合声发射信号的振幅、振铃计数研究损伤过程,并基于小波变换进行损伤信号的时频分析,发现不同损伤类型可通过声发射振幅及频率特征有效识别。  相似文献   

13.
Carbon/epoxy laminates interleaved with laboratory scale electrospun Nylon 66 nanofibrilmat and spunbonded nonwoven mats were investigated. The effect of the nanoscale fibers on the fracture toughness of the composite under pure Mode I loading was evaluated. It was shown that the nanofibrilmat is responsible for a major interlaminar fracture toughness improvement, as high as 255–322%, compared to a noninterleaved carbon/epoxy reference laminate. We further studied the improvement mechanism of the electrospun nanofibrilmat compared to a commercial spunbonded nonwoven Nylon 66 mat. A combination of two interlayer fracture mechanisms responsible for the toughness improvement is suggested: the first is related to the high energy dissipated by bridged thermoplastic nanofibers and the second is attributed to the generation of a plastic zone near the crack tip. The interlaminar fracture mechanisms of both electrospun nanofibrilmat and the nonwoven mat interleaving was analyzed and discussed. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

14.
In this study, high-performance polyethylene (HPPE) fiber-based needle punched nonwovens were interleaved in cross-plied woven carbon fabric/epoxy composite laminates to enhance their interlaminar and impact properties. The placement of needle punched nonwoven interleaves exhibited considerable enhancement in interlaminar shear strength (ILSS), impact damage tolerance, and compression after impact (CAI) strength of laminates as evidenced by higher interlaminar strength, less absorbed energy, higher elastic energy, reduced damage degree, reduced out-of-plane deformation, higher load-bearing capacity, and higher residual compressive strength as compared to control sample. In particular, the composite laminate with placement of interleaves in alternating sequence between carbon plies resulted in 205.76% increase in ILSS and 129, 103 and 85% increase in CAI at 10, 25, and 40 J impact energy, respectively. Moreover, damaged surface area and out-of-plane deformation reduced to 38.75% and 62.5%, respectively for the same specimen impacted at 40 J energy. These results suggest that the HPPE fiber-based needle punched nonwoven interleaving can be adopted as a simple and low-cost approach compared with other interleaving techniques, to enhance the resistance to delamination, impact performance, and damage tolerance of traditional structural laminates.  相似文献   

15.
We present a simple, out-of-autoclave approach to improve the delamination toughness of fiber-reinforced composites using epoxy interlayers containing 20 wt.% polyamide-12 (PA) particles and 1 wt.% multi-walled carbon nanotubes (MWCNTs). Composites were prepared by integrating partially cured thin films at the laminate mid-plane using vacuum-assisted resin transfer molding. The introduction of epoxy/PA interlayers increased fracture toughness due to the ductile deformation and crack bridging of PA particles within an interlaminar damage zone with uniform thickness of about 20 μm. Composites interlayered with epoxy/PA/MWCNT exhibited nearly 2.5 and 1.5 times higher fracture toughness than composites containing neat epoxy and epoxy/PA interlayers, respectively, without an observable increase in interlaminar thickness. The fracture surface was analyzed to identify failure modes responsible for the fracture toughness improvement. The MWCNTs are proposed to inhibit critical loading of defects by minimizing stress concentration within the interlaminar region, thereby enabling greater deformation of the PA particles during fracture.  相似文献   

16.
The Mode I interlaminar fracture behavior of woven carbon fiber/epoxy composite laminates incorporating partially cured carbon nanotube/epoxy composite films has been investigated. Laminates with films containing carbon nanotubes (CNTs) in the as‐received state and functionalized with polyamidoamine were evaluated, as well as laminates with neat epoxy films. Double‐cantilever beam (DCB) specimens were used to measure GIc, the critical strain energy release rate (fracture toughness) versus crack length. Post‐fracture microscopic inspection of the fracture surfaces was performed. Results show that initial fracture toughness was improved with the amino‐functionalized CNT/epoxy interleaf films, but the important factor appears to be the polyamidoamine functionalization, not the CNTs. The initial fracture toughness remained relatively unaffected with the incorporation of neat epoxy and as‐received CNT/epoxy interleaf films. Plateau fracture toughness was unchanged with the use of functionalized CNT/epoxy interleaf films, and was reduced with the use of neat epoxy and as‐received CNT/epoxy interleaf films. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
It is generally recognized that fiber-reinforced laminated composites are susceptible to damage resulting from low-velocity impacts. Over recent years, many strategies have been devised to increase the fracture toughness of resin matrix materials with the aim of improving the composite's overall resistance to impact damage. One popular strategy for enhancing the fracture toughness of thermosets involves increasing the molecular weight between crosslinks, which, in turn, enhances the resins ductility. In this paper, we investigate the efficiency of this toughening approach with regard to resisting damage in composite laminates subjected to low-velocity impacts. A mechanistic study shows that at least two distinct processes occur during an impact event. First, the laminate experiences a local failure, which resembles a Hertzian fracture process followed by subsequent delamination between the plies. Hertzian fracture occurs once at a critical threshold level initiates laminate damage through the development of a spatially configured array of matrix microcracks, which resemble that of a Hertzian cone together with radial cracks. Further damage accumulates in the laminate by inter-ply delamination with the size of delaminated area increasing coincident with the impact load. Systematic changes in resin crosslink density show that both damage initiation and accumulation are affected. However, the maximum resistance for damage initiation occurs at a much higher crosslink density than that measured for damage accumulation.  相似文献   

18.
The mode 1 interlaminar fracture toughness of biaxial (±45°) noncrimp warp‐knitted fabric composites made of glass/PP commingled yarn was investigated. The crack propagation along the warp and weft directions, respectively, was considered for the composites cooled at two different rates during laminate molding. The interlaminar fracture toughness was characterized by determining the critical strain energy release rate (GIC) of initiation and propagation measured from the double cantilever beam tests. In the case of a slow cooling rate (1°C/min), most specimens possess pure interlaminar crack propagation and direction‐independence characteristics. Nevertheless, the high‐cooled (10°C/min) specimens fractured in both directions suffer extensive intraply damage (crack branching, debonding, and bridging of 45°‐oriented interfacial yarns) and knit thread breakage, leading to GIC of propagation two times higher than that of the slow‐cooled specimens, and the clear difference in the GIC values of initiation between the two directions may be due to the contribution of the knit thread breakage to the fracture energy. POLYM. COMPOS., 2008 © 2007 Society of Plastics Engineers  相似文献   

19.
《Polymer Composites》2017,38(8):1732-1740
In this study, flax fiber reinforced and flax/basalt hybridized vinyl ester composites were produced and their interlaminar fracture toughness (mode II) behavior was investigated using the three‐point bend end‐notched flexural (3ENF) testing. From the results, the average of the maximum values for each group of specimen obtained for critical strain energy release rate G IIC and stress intensity factor K II for flax/vinyl ester specimens were 1,940 J/m2 and 134 kPam0.5. Similarly, G IIC and K II values recorded for hybridized specimens were 2,173 J/m2 and 178 kPam0.5, respectively. The results for the flax/basalt hybridized composites exhibited an improved fracture toughness behavior compared to flax/vinyl ester composites without hybridization. The cohesive zone modeling (CZM) was also used to predict the delamination crack propagation in mode‐II in laminated composite structures. After the experimental study, the 3ENF specimens were modeled and simulated using ANSYS. The CZM/FEA results were in reasonable agreement with the experimental results. POLYM. COMPOS., 38:1732–1740, 2017. © 2015 Society of Plastics Engineers  相似文献   

20.
A new numerical simulation method was proposed to predict the mechanical behavior of carbon fiber reinforced resin composites under low‐velocity impact load. The impact damage evolution can be characterized in the form of energy dissipation which can be calculated through the new numerical model. The evolution mechanism of delamination was analyzed through distinguishing between the normal induced delamination and tangential slip induced delamination. The drop weight tests were conducted on composite laminates with five kinds of stacking sequence. Experimental analysis was also presented in this article. The damage area and distribution was investigated through ultrasonic C‐scan. The prediction had a good agreement with the experimental results through the comparison of impact response. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44374.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号