首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photoluminescence (PL) from fullerene (C60 and C70)‐doped polymers such as poly(methyl methacrylate) (PMMA), polystyrene (PS), poly(methyl phenyl silane) (PMPS) and poly(phenyl silsesquioxane) (PPSQ) increases gradually under laser irradiation in air (but not in vacuum and in nitrogen) and eventually becomes visible to the naked eye. Concomitantly, the PL peak is broadened and, in most cases, blue‐shifted. No such PL increases are observed for pure C60 films made by vacuum vapor deposition and pure polymer films. Among the polymers used, fullerene‐doped PMMA has the greatest PL increase after several hours of laser irradiation and fullerene‐doped PMPS has the highest rate of PL increase at the initial stage of the laser irradiation. To gain an insight into the mechanism of the PL increase, laser‐irradiated fullerene‐doped PMMA samples were analyzed by UV‐Vis spectrophotometer, FT‐IR, mass spectrometry, GPC and NMR. The results show that the PL increase can be attributed to CH60On‐polymer (or C70On‐polymer) and oxidized fullerene‐polymer adducts formed by some laser‐induced photochemical reactions among fullerenes, oxygen and polymers.  相似文献   

2.
《国际聚合物材料杂志》2012,61(1-2):301-314
Abstract

Investigation has been made on the effects of fullerenes C60 and C70 on the degradation of PMMA and PS under helium and oxygen by a DSC method. The dependences of the temperature of the onset of the thermal and thermo-oxidative degradation of the polymers on concentration of C60 and C70 have been obtained. The temperature limits of effective inhibition of the polymers by fullerenes have been determined. The temperature limit depends on the chemical structure of polymer, namely it is considerably greater in the degradation of more stable polymer. In the thermo-oxidative degradation of the polymers with addition of fullerenes, the temperature limit of inhibition of less stable PS is much less and of more stable PMMA is considerably greater than that in the presence of well-known antioxidants. It was concluded that fullerenes are more effective high temperature inhibitors of the thermo-oxidative degradation of PMMA than well-known antioxidants. The suggestion was made that the thermo-oxidative degradation of polymers initiates the oxidation of fullerenes.  相似文献   

3.
The environmentally friendly esterification of acetosolv lignin (AL), obtained from pressed oil palm mesocarp fibers, is described, for the improvement of thermo‐oxidative properties of poly(methyl methacrylate) (PMMA) films. Acetylation of AL was performed in ecofriendly conditions using acetic anhydride in the absence of catalysts. Acetylated acetosolv lignin (AAL) was successfully obtained in only 12 min with a solvent‐free and catalyst‐free microwave‐assisted procedure. Lignins were characterized by Fourier transform infrared spectroscopy, size exclusion chromatography, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC), confirming the efficacy of the methodology employed. AL and AAL as fillers in different concentrations (1% and 5%) were added to PMMA films. The thermal and mechanical properties of the lignin‐incorporated films were analyzed by TGA, DSC, and dynamic mechanical analysis (DMA). The films incorporated with lignin and acetylated lignin presented initial degradation temperature (Tonset) and onset oxidative temperature (OOT) values higher than pure PMMA films, contributing thus to an enhancement of thermo‐oxidative stability of PMMA. The DMA analyses showed that incorporation of AL or AAL increased the storage modulus (E′) of PMMA films, but did not affect their glass‐transition temperatures (Tg). The results indicate the potential use of oil palm mesocarp lignin to enhance the thermo‐oxidative properties of PMMA without compromising its mechanical response. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45498.  相似文献   

4.
Well‐defined polymer‐Mg(OH)2 nanocomposites were prepared by atom transfer radical polymerization (ATRP). The ATRP initiators were covalently attached to the Mg(OH)2 by esterification of 2‐chloropropionyl chloride with hydroxyl group. The amount of polymer grafted from Mg(OH)2 can be controlled using a different catalyst system and adding a small amount of polar solvent. The well‐defined diblock copolymer, consisting of poly(styrene) (PS) and poly(methyl methacrylate) (PMMA) were synthesized. The products were characterized by nuclear magnetic resonance, Fourier transform infrared, differential scanning calorimetry, and thermal gravimetric analysis. The morphologies of PS/PMMA and PS/PMMA/Mg(OH)2g‐PS‐b‐PMMA blends are compared by using a scanning electron microscope. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3680–3687, 2007  相似文献   

5.
The thermal behavior and properties of immiscible blends of polystyrene (PS) and poly(methyl methacrylate) (PMMA) with and without PS‐b‐PMMA diblock copolymer at different melt blending times were investigated by use of a differential scanning calorimeter. The weight fraction of PS in the blends ranged from 0.1 to 0.9. From the measured glass transition temperature (Tg) and specific heat increment (ΔCp) at the Tg, the PMMA appeared to dissolve more in the PS phase than did the PS in the PMMA phase. The addition of a PS‐b‐PMMA diblock copolymer in the PS/PMMA blends slightly promoted the solubility of the PMMA in the PS and increased the interfacial adhesion between PS and PMMA phases during processing. The thermogravimetric analysis (TGA) showed that the presence of the PS‐b‐PMMA diblock copolymer in the PS/PMMA blends afforded protection against thermal degradation and improved their thermal stability. Also, it was found that the PS was more stable against thermal degradation than that of the PMMA over the entire heating range. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 609–620, 2004  相似文献   

6.
To improve the large release of smoke and heat for brominated flame retardants (BFRs) in fire hazard, fullerene (C60) had been introduced in high density polyethylene (HDPE)/bromine flame retardant (Deca/Sb2O3, BFR in short) system in this study. The effects of C60 on the thermal properties, flame retardant properties, rheological behaviors, and smoke release behaviors in HDPE/BFR blends were researched. During polymer thermal degradation, C60 and BFR exhibited the trapping radical ability in condensed phase and gaseous phase, respectively. The intergrated effects of C60 and BFR on the thermal stability and flammability of HDPE were studied by thermo‐gravimetry and cone calorimeter. It was indicated that the introduction of C60 improved the thermal and thermo‐oxidative stability of HDPE/BFR blends. A remarkable advantage of adding C60 was to reduce the peak heat release rate and the average specific extinction area, especially at higher concentration of C60. The analysis of rheological behaviors and pyrolysis products revealed that C60 can capture alkyl radicals, chain radicals, and bromine radicals in the condensed phase, which was in favor of terminating the thermo‐oxidative decomposition and inhibiting the heat and smoke release of HDPE/BFR blends during combustion.  相似文献   

7.
The miscibility of C60‐containing poly(methyl methacrylate) (PMMA‐C60) with poly(vinylidene fluoride) (PVDF) was studied. Two PMMA‐C60 samples containing 2.6 and 7.4 wt % C60 were found to be miscible with PVDF based on single glass transition temperature criterion and melting point depression of PVDF. However, the interaction parameters of the two blend systems are less negative than that of the PMMA/PVDF blend system, showing that the incorporation of C60 reduces the ability of carbonyl groups of PMMA to interact with PVDF. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 1393–1396, 2000  相似文献   

8.
This work demonstrates for the first time that it is possible to prepare alternating oligomers, containing both dyes and fullerenes in repeating structures, that act as electron acceptors in bulk heterojunction devices. A sterically controlled azomethine ylide cycloaddition polymerization is employed with either C60 or phenyl‐C61‐butyric acid methyl ester (PCBM) and the dye diketopyrrolopyrrole (DPP). The former results in low molecular weights of around 5600 g mol?1, whereas the latter, PCBM, enables the formation of more soluble chains with higher molecular weights of ca 11 200 g mol?1. Remarkably, cyclic voltammetry shows that the incorporation of PCBM into the main‐chain raises the lowest unoccupied molecular orbital by ca 380 meV due to the in‐chain bis‐additions. The observation of the complete quenching of DPP fluorescence by the fullerene moiety, combined with computer modelling studies, indicates both electron and energy transfers between intra‐chain moieties. Proof‐of‐concept devices show low efficiencies most likely due to as‐yet‐unoptimized preparation and structures, but hint at the possibilities of these novel bi‐functionalized, in‐chain fullerenes due to their high V oc of 0.89 V with an example low‐bandgap polymer, KP115, and reasonable charge mobilities of ca 1 × 10?4 cm2 V?1 s?1, making this new class of materials of strong interest for applications. Furthermore, their good thermal stability to above 300 °C and their stabilization of photovoltaic devices against thermal degradation confirm that this new pathway to a wide range of dye/fullerene structures is extremely promising. © 2016 Society of Chemical Industry  相似文献   

9.
Polymer blends based on various ratios of polystyrene (PS) and polymethyl methacrylate (PMMA) were exposed to different doses of gamma radiation up to 25 Mrad. The structure–property behavior of the polymer blends before and after they had been irradiated was investigated by DSC, TGA, and FTIR spectroscopy. The DSC scans of the glass transition temperature (Tg) of the different polymer blends showed that the Tg was greatly decreased by increasing the ratio of the PMMA component in the polymer blends. Moreover, the Tg of PS/PMMA blends was found to decrease with increasing irradiation dose. The depression in Tg was noticeable in the case of blends rich in PMMA component. The TGA thermograms showed that the thermal stability of the unirradiated polymer blends decreases with increasing the ratios of PMMA component. Also, it was found that the presence of PS polymer in the blends affords protection against gamma radiation degradation and improves their thermal stability. However, exposing the polymer blends to high doses of gamma radiation caused oxidative degradation to PMMA components and decreased the thermal stability. The investigation of the kinetic parameters of the thermal decomposition reaction confirm the results of thermal stability. The FTIR analysis of the gamma‐irradiated polymer blend films gives further support to the TGA data. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 509–520, 1999  相似文献   

10.
The homogeneous nanocomposites (NC) films of amino modified and metal decorated multiwall carbon nanotubes (MWCNTs) with polymethylmethacrylate (PMMA) were synthesized through in‐situ free radical polymerization. Silver metal nanohybrids (Ag/MWCNTs) were prepared by two strategies, that is, reduction of metal salt in presence of sodium dodecyl sulfate and in‐situ growth from AgNO3 aqueous solution. The amino functionalization by ball milling enhanced the dispersion of MWCNT in monomer and produced a new class of radiation resistant NC. These synthesized films were characterized by FTIR, TGA, TEM, EDX, TC, DMA, and optical microscopy to ascertain their structural morphologies, thermal stability, and mechanical strength. Microscopic studies reflect the homogeneous mixing of amino functionalized and metal decorated MWCNTs in polymer matrix contributing in the enhancement of thermal stability, thermo‐mechanical strength, glass transition temperatures, and thermal conductivity of NC even at 0.25 wt% addition of modified nanofiller. The thermal stability of NC film at 0.25 wt% loading was increased around ≂50°C and the raise of thermo‐mechanical properties was observed up to 85% at 100°C in the presence of adsorbed surfactant. Thermal and thermomechanical behavior of pre and post UV/O3 irradiated NC films has been compared with neat polymer. The results revealed that amino modified nanofiller embedded network in polymer matrix can effectively disperse the radiation and has a dramatic reinforcement effect on the nature of degradation of PMMA matrix. POLYM. COMPOS., 35:1807–1817, 2014. © 2013 Society of Plastics Engineers  相似文献   

11.
High transparent and UV‐shielding poly (styrene)‐co‐poly(methyl methacrylate) (PS‐PMMA)/zinc oxide (ZnO) optical nanocomposite films were prepared by solution mixing using methyl ethyl ketone (MEK) as a cosolvent. The films were characterized by X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), ultraviolet–visible (UV–vis) spectra, high‐resolution transmission electron microscopy (HR‐TEM), and atomic force microscope (AFM). Cross‐section HR‐TEM and AFM images showed that the ZnO nanoparticles were uniformly dispersed in the polymer matrix at the nanoscale level. The XRD and FTIR studies indicate that there is no chemical bond or interaction between PS‐PMMA and ZnO nanoparticles in the nanocomposite films. The UV–vis spectra in the wavelength range of 200–800 nm showed that nanocomposite films with ZnO particle contents from 1 to 20 wt % had strong absorption in UV spectrum region and the same transparency as pure PMMA‐PS film in the visible region. The optical properties of polymer are greatly improved by the incorporation of ZnO nanoparticles. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
Poly(lauryl methacrylate)s with anthracene moieties in the side chain were converted with C60‐fullerene and phenyl‐C61‐butyric acid methyl ester (PCBM), resulting in new remendable (self‐healing) polymeric materials. The utilization of differently substituted anthracene monomers enabled the tuning of the reactivity and the resulting mechanical properties. Copolymers with different contents of the anthracene moieties were synthesized and characterized using size exclusion chromatography, 1H nuclear magnetic resonance (NMR) spectroscopy as well as differential scanning calorimetry (DSC). 1H NMR spectroscopic studies were utilized in order to investigate the reversibility of the Diels–Alder reaction between copolymers with C60‐fullerene and PCBM, respectively, in solution. In order to investigate the conversion of the polymers with C60‐fullerene and PCBM in bulk, additionally, DSC, nanoindentation, rheology, atomic force microscopy (AFM), 3D microscopy, simultaneous thermal analysis (STA) and FT‐Raman investigations were performed. The fullerene‐containing copolymers could be healed in a temperature range of 40–80 °C. Consequently, a new generation of low temperature remendable polymers could be established. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45916.  相似文献   

13.
Submicron polystyrene (PS)/poly(methyl methacrylate) (PMMA) blends were generated by the precipitation with a compressed antisolvent (PCA) technique. The generation of PS/PMMA blends was carried out by spraying a solution containing PS and PMMA into a precipitator. The blends without coalescence were observed to only be generated when both vapor and liquid CO2 existed in the precipitator combined with appropriate total polymer concentration in solution, molecular weights (Mws) of PS and PMMA, mass ratio of PS to PMMA, flow rates of CO2 and polymer solution, and liquid CO2 level in the precipitator. Two Mws of PS, 144,000 and 44,000, and two Mws of PMMA, 85,000 and 36,000, were used in this study. It was found that the blends could be easier to generate using a higher PS Mw, a lower PMMA Mw, and a higher mass ratio of PS to PMMA. Toluene with a solubility parameter smaller than that of tetrahydrofuran (THF) was found to be the more appropriate solvent for generating spherical PS/PMMA submicron blends. The SEM and TEM images show that the spherical PS/PMMA core/shell blends could be generated at a temperature of 298 K, a pressure of 6.41 MPa, a liquid CO2 level of 1/2 of the precipitator, a CO2 flow rate of 2000 mL/min, a solution flow rate of 5 or 10 mL/min, and a total polymer concentration of 0.72 wt% for a PS Mw of 144,000, a PMMA Mw of 36,000, and a PS/PMMA mass ratio of 9/1. Individual and spherical PS and PMMA particles or spherical PS particles partially covered by a PMMA films, however, were generated when the liquid CO2 level was of 1/8 or lower in the precipitator. A possible mechanism for the formation of core-shell blend was proposed.  相似文献   

14.
A novel thermo‐ and biodegradable MnSt2–kaolin–polyethylene (signed as MKPE) composite film was prepared through a melt blending technique. Manganese stearate and common kaolin were employed as thermo‐degradable additives and biodegradable promoter to improve the degradable efficiency of the waste PE. Thermo‐oxidative testing was carried out in an air oven maintained at 70°C simulating a compost temperature. The biodegradation of the aging films was also investigated by analysis of evolved carbon dioxide of films in aquatic test systems according to the International Standards ISO 14852 (1999). The composite film was characterized by electronic universal testing machine, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, attenuated total reflection‐flourier transformed infrared spectroscopy and thermo gravimetric analysis. These results showed that the MKPE film exhibited a high degree of susceptibility to thermo‐oxidation and biodegradation. After thermal aging for 30 days, the mechanical properties of MKPE films reduced quickly and oxygen groups were introduced into the polymer chains. The kaolin particles wrapped in polymers were exposed gradually because of the rupture of polymer chains by thermal aging. The biodegradation degree reached 24.26% after incubation in an aqueous medium for 60 days. A possible mechanism for thermal oxidative degradation and biodegradation was also discussed. POLYM. COMPOS., 36:939–945, 2015. © 2014 Society of Plastics Engineers  相似文献   

15.
Xue LiYanchun Han  Lijia An 《Polymer》2003,44(19):5833-5841
By addition of a small amount of poly(methyl methacrylate) (PMMA) into polystyrene (PS), we present a novel approach to inhibit the dewetting process of thin PS film through phase separation of the off-critical polymer mixture (PS/PMMA). Owing to the preferential segregation of PMMA to the solid SiOx substrate, a nanometer thick layer, rich in PMMA phase, is formed. It is this diffusive PMMA-rich phase layer near the substrate that alters the dewetting behavior of the PS film. The degree of inhibition of dewetting depends on the concentration and molecular weight of PMMA component. PMMA with low (15.9k) and intermediate (102.7k) molecular weight stabilizes the films more effectively than that with a higher molecular weight (387k).  相似文献   

16.
We report an environmentally “green” method to improve adhesion at a polymer/metal interface by using supercritical carbon dioxide (scCO2). Spun-cast polystyrene (PS) and poly(methyl methacrylate) (PMMA) thin films on cleaned Si wafers were used for this study. Film thicknesses of both polymer films were prepared in the range of 100 Å to 1600 Å. We exposed the films to scCO2 in the pressure-temperature (P–T) range corresponding to the density-fluctuation ridge, where the excess swelling of both polymer films occurred, and then froze the swollen structures by quick evaporation of CO2. A chromium (Cr) layer with film thickness of 300–400 Å was deposited onto the exposed film by using an E-beam evaporator. X-ray reflectivity (XR) measurements showed that the interfacial width between the Cr and exposed polymer layers increased by a factor of about two compared with that without exposure to scCO2. In addition, the large interfacial broadening was found to occur irrespective of the thickness of both polymer films. After the XR measurements, the dewetting structures of the PS/Cr films induced by additional annealing were characterized by using atomic force microscopy, showing improved surface morphology in the exposed films. Contact angle measurements showed that a decrease in interfacial tension with exposure to scCO2 accompanied the increase in interfacial width.  相似文献   

17.
In situ steady‐state fluorescence (SSF) measurements were used for studying dissolution of Latex films in real time. Latex films with various thicknesses are formed from pyrene (P) labeled poly(methyl methacrylate) (PMMA) latex particles, sterically stabilized by polyisobutylene (PIB). Annealing of latex films were performed above Tg at 220°C temperature for 60 min. UV‐Visible (UVV) spectrometer was used to measure the transparency of latex films. It was observed that thicker films formed more opaque films than thinner films. Heptane (20%), chloroform (80%) mixture was used as a dissolution agent. Diffusion of pyrene labeled PMMA chains was monitored in real time by the change of pyrene fluorescence intensity, IP in the polymer‐solvent mixture. Diffusion coefficients, D, and relaxation constants, k0, of PMMA chains were measured and found to be strongly dependent on the latex films thicknesses. It is observed that thicker and opaque films dissolved much faster than the thinner and transparent films. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1087–1095, 2000  相似文献   

18.
The incompatibility of hydrophilic wood fiber and hydrophobic polymers is the main difficulty with wood thermoplastic polymer composites. To overcome this issue, many researchers suggest grafting polymer onto wood fiber for improving the interfacial adhesion during mixing. A systematic ESCA study of chemi-thermo-mechanical pulp (CTMP) grafted fiber has been performed to provide chemical information about surface composition modification. The material analyzed included initial CTMP fiber, the pure polymer i.e., poly(methyl methacrylate) (PMMA) as reference material, and grafted fiber at different polymer loadings. Interest is focused on the carbon and oxygen spectra. Samples at high polymer loading or high grafting level have an O/C, C1, C2, C4, O1, and O2 intensities much similar to those of the PMMA but a little different since some wood fiber sites have still not fixed the polymer. ESCA spectra provide information on about 1–5 nm depth. The ESCA technique allows the monitoring of grafting polymer onto wood fiber as a surface phenomenon.  相似文献   

19.
Polystyrene‐fullerene compositions containing up to 0.45 mol % (3 wt %) fullerene C60 were investigated. It was established that the addition of fullerene to polystyrene (PS) leads to an increase of molecular packing density and so influences the transport of small molecules through the polymer films. Gas diffusion through films of PS‐fullerene compositions is slower than through PS films, and gas separating properties of compositions are higher. Dielectric studies showed that the fullerene is distributed as clusters in the polymer matrix of solid composition prepared from a toluene solution of PS and fullerene. Heating without air to the temperature higher than PS glass transition leads to increasing relaxation time of α‐transition in PS of compositions containing >0.15 mol % (1 wt %) fullerene. This effect is caused by rather strong interaction of PS chains via fullerene molecules entered into the PS‐fullerene complex. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2946–2951, 2002  相似文献   

20.
Photoconductivity has been measured on films of pure poly(Nvinylcarbazole) (PVK) and PVK doped with the metallofullerene Dy@C82 and the fullerenes C84 and C60. The photo-induced discharge rate of the PVK film increased dramatically when doped with the metallofullerene or the fullerenes. Comparatively, the film doped with Dy@C82 displayed better photoconductivity than that doped with C84, which is attributed to the Dy@C82 being a better electron acceptor than C84. However, the film doped with C60 showed the best photoconductivity. This is attributed to the better electron accepting ability of excited C60* or the better miscibility of the hollow fullerenes with the PVK polymer and organic solvents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号