首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Silicon based thin tandem solar cells were fabricated by plasma enhanced chemical vapor deposition (PECVD) in a 30 × 30 cm2 reactor. The layer thicknesses of the amorphous top cells and the microcrystalline bottom cells were significantly reduced compared to standard tandem cells that are optimized for high efficiency (typically with a total absorber layer thickness from 1.5 to 3 µm). The individual absorber layer thicknesses of the top and bottom cells were chosen so that the generated current densities are similar to each other. With such thin cells, having a total absorber layer thickness varying from 0.5 to 1.5 µm, initial efficiencies of 8.6–10.7% were achieved. The effects of thickness variations of both absorber layers on the device properties have been separately investigated. With the help of quantum efficiency (QE) measurements, we could demonstrate that by reducing the bottom cell thickness the top cell current density increased which is addressed to back‐reflected light. Due to a very thin a‐Si:H top cell, the thin tandem cells show a much lower degradation rate under continuous illumination at open circuit conditions compared to standard tandem and a‐Si:H single junction cells. We demonstrate that thin tandem cells of around 550 nm show better stabilized efficiencies than a‐Si:H and µc‐Si:H single junction cells of comparable thickness. The results show the high potential of thin a‐Si/µc‐Si tandem cells for cost‐effective photovoltaics. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Reducing the optical losses and increasing the reflection while maintaining the function of doped layers at the back contact in solar cells are important issues for many photovoltaic applications. One approach is to use doped microcrystalline silicon oxide (μc‐SiOx:H) with lower optical absorption in the spectral range of interest (300 nm to 1100 nm). To investigate the advantages, we applied the μc‐SiOx:H n‐layers to a‐Si:H single junction solar cells. We report on the comparison between amorphous silicon (a‐Si:H) single junction solar cells with either μc‐SiOx:H n‐layers or non‐alloyed silicon n‐layers. The origin of the improved performance of a‐Si:H single junction solar cells with the μc‐SiOx:H n‐layer is identified by distinguishing the contributions because of the increased transparency and the reduced refractive index of the μc‐SiOx:H material. The solar cell parameters of a‐Si:H solar cells with both types of n‐layers were compared in the initial state and after 1000 h of light soaking in a series of solar cells with various absorber layer thicknesses. The measurement procedure for the determination of the solar cell performance is described in detail, and the measurement accuracy is evaluated and discussed. For an a‐Si:H single junction solar cell with a μc‐SiOx:H n‐layer, a stabilized efficiency of 10.3% after 1000 h light soaking is demonstrated. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
We have passivated boron‐doped, low‐resistivity crystalline silicon wafers on both sides by a layer of intrinsic, amorphous silicon (a‐Si:H). Local aluminum contacts were subsequently evaporated through a shadow mask. Annealing at 210°C in air dissolved the a‐Si:H underneath the Al layer and reduces the contact resistivity from above 1 Ω cm2 to 14·9 m Ω cm2. The average surface recombination velocity is 124 cm/s for the annealed samples with 6% metallization fraction. In contrast to the metallized regions, no structural change is observed in the non‐metallized regions of the annealed a‐Si:H film, which has a recombination velocity of 48 cm/s before and after annealing. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
We showed that thin n‐type CuOx films can be deposited by radio‐frequency magnetron reactive sputtering and demonstrated the fabrication of n‐CuOx/intrinsic hydrogenated amorphous silicon (i‐a‐Si:H) heterojunction solar cells (HSCs) for the first time. A highly n‐doped hydrogenated microcrystalline Si (n‐µc‐Si:H) layer was introduced as a depletion‐assisting layer to further improve the performance of n‐CuOx/i‐a‐Si:H HSCs. An analysis of the external quantum efficiency and energy‐band diagram showed that the thin depletion‐assisting layer helped establish sufficient depletion and increased the built‐in potential in the n‐CuOx layer. The fabricated HSC exhibited a high open‐circuit voltage of 0.715 V and an efficiency of 4.79%. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
We report on improving the performance of pin‐type a‐Si:H/a‐SiGe:H/µc‐Si:H triple‐junction solar cells and corresponding single‐junction solar cells in this paper. Based on wet‐etching sputtered aluminum‐doped zinc oxide (ZnO:Al) substrates with optimized surface morphologies and photo‐electrical material properties, after adjusting individual single‐junction solar cells utilized in triple‐junction solar cells with various optimization techniques, we pay close attention to the optimization of tunnel recombination junctions (TRJs). By means of the optimization of individual a‐Si:H/a‐SiGe:H and a‐SiGe:H/µc‐Si:H double‐junction solar cells, we compensated for the open circuit voltage (Voc) loss at the a‐Si:H/a‐SiGe:H TRJ by adopting a p‐type µc‐Si:H layer with a low activation energy. By combining the optimized single‐junction solar cells and top/middle, middle/bottom TRJs with little electrical losses, an initial efficiency of 15.06% was achieved for pin‐type a‐Si:H/a‐SiGe:H/µc‐Si:H triple‐junction solar cells. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, we describe a technique for high‐quality interface passivation of n‐type crystalline silicon wafers through the growth of hydrogenated amorphous Si (a‐Si:H) thin layers using conventional plasma‐enhanced chemical vapor deposition. We investigated the onset of crystallization of the a‐Si:H layers at various deposition rates and its effect on the surface passivation properties. Epitaxial growth occurred, even at a low substrate temperature of 90 °C, when the deposition rate was as low as 0·5 Å/s; amorphous growth occurred at temperatures up to 150 °C at a higher deposition rate of 4·2 Å/s. After optimizing the intrinsic a‐Si:H layer deposition conditions and then subjecting the sample to post‐annealing treatment, we achieved a very low surface recombination velocity (7·6 cm/s) for a double‐sided intrinsic a‐Si:H coating on an n‐type crystalline silicon wafer. Under the optimized conditions, we achieved an untextured heterojunction cell efficiency of 16·7%, with a high open‐circuit voltage (694 mV) on an n‐type float‐zone Si substrate. On a textured wafer, the cell efficiency was further enhanced to 19·6%. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Plasma treatment (PT) of the buffer layer for highly H2‐diluted hydrogenated amorphous silicon (a‐Si:H) absorption layers is proposed as a technique to improve efficiency and mitigate light‐induced degradation (LID) in a‐Si:H thin film solar modules. The method was verified for a‐Si:H single‐junction and a‐Si:H/microcrystalline silicon (µc‐Si:H) tandem modules with a size of 200 × 200 mm2 (aperture area of 382.5 cm2) under long‐term light exposure. H2 PT at the p/i interface was found to eliminate non‐radiative recombination centers in the buffer layer, and plasma‐enhanced chemical vapor deposition at low radio‐frequency power was found to suppress the generation of defects during the growth of a‐Si:H absorption layers on the treated buffer layers. With optimized H2 PT of the a‐Si:H single‐junction module, the stabilized short circuit current and fill factor increased, and the stabilized open circuit voltage moves beyond its initial value. The results demonstrate 7.7% stabilized efficiency and 10.5% LID for the a‐Si:H single‐junction module and 10.82% stabilized efficiency and 7.76% LID for the a‐Si:H/µc‐Si:H tandem module. Thus, the growth of an a‐Si:H absorption layer on a H2 PT buffer layer can be considered as a practical method for producing high‐performance Si thin film modules. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
In this study, deposition conditions for making a‐SiOx:H are investigated systematically in order to obtain a high band gap material. We found that at given optical band gap, a‐SiOx:H with favorable opto‐electronic properties can be obtained when deposited using low CO2 flow rates and deposition pressures. We also found that a low radio frequency power density is required in order to limit the effect of ion bombardment on the material properties of i‐a‐SiOx:H and thereby the solar cell performance. In addition, by decreasing the heater temperature from 300 to 200°C when making the i‐a‐SiOx:H, the Voc can be increased. We employed optimized p‐doped and n‐doped a‐SiOx:H films into the p‐i‐n solar cells, and as a consequence, a high Voc of over 1 V and high fill factor (FF) are obtained. When depositing on texture‐etched ZnO:Al substrates, a high efficiency a‐SiOx:H single junction solar cell having a high Voc × FF product of 0.761 (Voc: 1.042 V, Jsc: 10.3 mA/cm2, FF: 0.73, efficiency: 7.83%) was obtained. The a‐SiOx:H solar cell shows comparable light degradation characteristics to standard a‐Si:H solar cells. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
A dynamic analysis of an amorphous silicon (a‐Si) thin film transistor liquid crystal display (TFT‐LCD) pixel is presented using new a‐Si TFT and liquid crystal (LC) capacitance models for a Simulation Program with Integrated Circuit Emphasis (SPICE) simulator. This dynamic analysis will be useful when predicting the performance of LCDs. The a‐Si TFT model is developed to accurately estimate a‐Si TFT characteristics of a bias‐dependent gate to source and gate to drain capacitance. Moreover, the LC capacitance model is developed using a simplified diode circuit model. It is possible to accurately predict TFT‐LCD characteristics such as flicker phenomena when implementing the proposed simulation model.  相似文献   

10.
Si thin‐film solar cells are suitable to the sunbelt region due to a low temperature coefficient and to building integrated photovoltaics owing to flexible size, easily controllable transmittance, and an aesthetic design. Nevertheless, the application is limited until now due to their low conversion efficiency. We have developed a triple junction cell (a‐Si:H/a‐SiGe:H/µc‐Si:H) providing efficient light utilization. For the high efficiency, we have focused on the smoothing of high haze TCO, a low absorption window layer, a low refractive index interlayer, uniformity control of the thickness and crystalline volume fraction in the microcrystalline silicon layer, and a low absorption back reflector. Through these activities, we have achieved a world record of 13.4% stabilized efficiency in the small size cell (1 cm2) and 10.5% stabilized efficiency in the large area module (1.1 × 1.3 m2), certificated by the National Renewable Energy Laboratory and Advanced Industrial Science and Technology, respectively. This result was presented in solar cell efficiency tables (Version 41). At this moment, we have increased a stabilized efficiency of 11.2% (Output power 160 W) in the large area module. We will report on the advanced materials in detail for high efficiency. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
12.
A good light trapping scheme is necessary to improve the performance of amorphous/microcrystalline silicon tandem cells. This is generally achieved by using a highly reflective transparent conducting oxide/metal back contact plus an intermediate reflector between the component cells. In this work, the use of doped silicon oxide as alternative n‐layer in micromorph solar cells is proposed as a means to obtain high current values using a simple Ag back contact and no extra reflector between the component cells n‐doped silicon oxide layers with a wide range of optical and electrical properties have been prepared. The influence of different deposition regimes on the material properties has been studied. The main findings are the following: (i) when carbon dioxide is added to the gas mixture, sufficiently high hydrogen dilution is necessary to widen the transition region from highly conductive microcrystalline‐like films to amorphous material characterized by low electrical conductivity; (ii) lower refractive index values are found with lower deposition pressure. Optimal n‐doped silicon oxide layers have been used in both component cells of micromorph devices, adopting a simple Ag back contact. Higher current values for both cells are obtained in comparison with the values obtained using standard n‐doped microcrystalline silicon, whereas similar values of fill factor and open circuit voltage are measured. The current enhancement is particularly evident for the bottom cell, as revealed by the increased spectral response in the red/infrared region. The results prove the high potential of n‐doped silicon oxide as ideal reflector for thin‐film silicon solar cells. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
A higher conversion efficiency of photovoltaic modules does not automatically imply a lower environmental impact, when the life‐cycle of modules is taken into account. An environmental comparison is carried out between the production and use phase, except maintenance, of an indium–gallium–phosphide (InGaP) on multicrystalline silicon (mc‐Si) tandem module, a thin‐film InGaP cell module and a mc‐Si module. The evaluation of the InGaP systems was made for a very limited industrial production scale. Assuming a fourfold reuse of the GaAs substrates in the production of the thin‐film InGaP (half) modules, the environmental impacts of the tandem module and of the thin‐film InGaP module are estimated to be respectively 50 and 80% higher than the environmental impact of the mc‐Si module. The energy payback times of the tandem module, the thin‐film InGaP module and the mc‐Si module are estimated to be respectively 5.3, 6.3 and 3.5 years. There are several ways to improve the life‐cycle environmental performance of thin‐film InGaP cells, including improved materials efficiency in production and reuse of the GaAs wafer and higher energy efficiency of the metalorganic chemical vapour deposition process. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
以中间层对非晶硅/微晶硅(a-Si/μc-Si)叠层太阳电池电学特性的影响为研究对象,运用太阳能电池模拟软件,计算了中间层折射率和厚度的变化对顶/底电池电流的影响.针对当前Si基薄膜叠层太阳电池中存在的顶、底电池电流不匹配的问题,提供了解决方案.结果表明,应选用折射率小于3.1的材料作中间层;顶、底电池电流完全匹配的中...  相似文献   

15.
Front silicon heterojunction and interdigitated all‐back‐contact silicon heterojunction (IBC‐SHJ) solar cells have the potential for high efficiency and low cost because of their good surface passivation, heterojunction contacts, and low temperature fabrication processes. The performance of both heterojunction device structures depends on the interface between the crystalline silicon (c‐Si) and intrinsic amorphous silicon [(i)a‐Si:H] layer, and the defects in doped a‐Si:H emitter or base contact layers. In this paper, effective minority carrier lifetimes of c‐Si using symmetric passivation structures were measured and analyzed using an extended Shockley–Read–Hall formalism to determine the input interface parameters needed for a successful 2D simulation of fabricated baseline solar cells. Subsequently, the performance of front silicon heterojunction and IBC‐SHJ devices was simulated to determine the influence of defects at the (i)a‐Si:H/c‐Si interface and in the doped a‐Si:H layers. For the baseline device parameters, the difference between the two device configurations is caused by the emitter/base contact gap recombination and the back surface geometry of IBC‐SHJ solar cell. This work provides a guide to the optimization of both types of SHJ device performance, predicting an IBC‐SHJ solar cell efficiency of 25% for realistic material parameters. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
We explore the potential of laser processing aluminium oxide (Al2O3)/amorphous silicon carbide (a‐SiCx:H) stacks to be used at the rear surface of p‐type crystalline silicon (c‐Si) solar cells. For this stack, excellent quality surface passivation is measured with effective surface recombination velocities as low as 2 cm/s. By means of an infrared laser, the dielectric film is locally opened. Simultaneously, part of the aluminium in the Al2O3 film is introduced into the c‐Si, creating p+ regions that allow ohmic contacts with low‐surface recombination velocities. At optimum pitch, high‐efficiency solar cells are achievable for substrates of 0.5–2.5 Ω cm. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
In recent years, zinc oxide has been investigated as a front electrode material in hydrogenated amorphous silicon/hydrogenated microcrystalline silicon (a‐Si:H/µc‐Si:H) tandem solar cells. Such as for other transparent conducting oxide materials and applications, a proper balancing of transparency and conductivity is necessary. The latter is directly related to the density and the mobility of charge carriers. A high density of charge carriers increases conductivity but leads to a higher absorption of light in the near‐infrared part of the spectrum due to increased free‐carrier absorption. Hence, the only way to achieve high conductivity while keeping the transparency as high as possible relies on an increase of carrier mobility. The carrier density and the mobility of sputtered Al‐doped zinc oxide (ZnO:Al) can be tailored by a sequence of different annealing steps. In this work, we implemented such annealed ZnO:Al films as a front electrode in a‐Si:H/µc‐Si:H tandem solar cells and compared the results with those of reference cells grown on as‐deposited ZnO:Al. We observed an improvement of short‐circuit current density as well as open‐circuit voltage and fill factor. The gain in current density could be attributed to a reduction of both sub‐band‐gap absorption and free‐carrier absorption in the ZnO:Al. The higher open‐circuit voltage and fill factor are indicators of a better device quality of the silicon for cells grown on annealed ZnO:Al. Altogether, the annealing led to an improved initial conversion efficiency of 12.1%, which was a gain of +0.7% in absolute terms. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Analytical modeling of p‐i‐n solar cells constitutes a practical tool to extract material and device parameters from fits to experimental data, and to establish optimization criteria. This paper proposes a model for p‐i‐n solar cells based on a new approximation, which estimates the electric field taking into account interface potential drops at the intrinsic‐to‐doped interfaces. This leads to a closed‐form current/voltage equation that shows very good agreement with device simulations, revealing that the inclusion of the interface potential drops constitutes a major correction to the classical uniform‐field approach. Furthermore, the model is able to fit experimental current/voltage curves of efficient nanocrystalline Si and microcrystalline Si p‐i‐n solar cells under illumination and in the dark, obtaining material parameters such as mobility‐lifetime product, built‐in voltage, or surface recombination velocity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
A GaInP/Ga(In)As/GaNAsSb/Ge 4J solar cell grown using the combined MOVPE + MBE method is presented. This structure is used as a test bench to assess the effects caused by the integration of subcells and tunnel junctions into the full 4J structure. A significant degradation of the Ge bottom subcell emitter is observed during the growth of the GaNAsSb subcell, with a drop in the carrier collection efficiency at the high energy photon range that causes a ~15% lower Jsc and a Voc drop of ~50 mV at 1‐sun. The Voc of the GaNAsSb subcell is shown to drop by as much as ~140 mV at 1‐sun. No degradation in performance is observed in the tunnel junctions, and no further degradation is neither observed for the Ge subcell during the growth of the GaInP/Ga(In)As subcells. The hindered efficiency potential in this lattice‐matched 4J architecture due to the degradation of the Ge and GaNAsSb subcells is discussed.  相似文献   

20.
Designing a tandem solar cell for use in a concentrator system is challenging because: (a) the conditions are variable, so solar cells rarely operate under optimal conditions, and (b) the conditions are not controlled, so any design problems are difficult to characterize. Here, we show how the fill factor can be used as a diagnostic tool to either verify correct system design and operation or to help identify a problem. We give particular attention to the detection of spectral skewing by the concentrator optics, as this can reduce the performance of GaInP2/GaAs tandem cells and is difficult to characterize. The conclusions are equally valid for GaInP2/GaAs/Ge triple‐junction cells. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号