共查询到20条相似文献,搜索用时 12 毫秒
1.
This paper presents an experimental method for studying the fragmentation of coal particles during coal combustion in a fluidized bed and the quantitative fragmentation indexes of 10 typical Chinese coal ranks. The influences of a variety of factors such as the bed temperature, the size of coal particles, the coal rank and the fluidizing medium on the fragmentation index of coal particles are also studied. The research results show that the main reason for the fragmentation of coal particles is the primary fragmentation, and that the volatile matter can drastically influence the degree of fragmentation of coal particles. 相似文献
2.
Devolatilization and combustion of large particles of Eastern Canadian coals (Evans and Minto), 5-50 mm dia., were studied in a bench-scale atmospheric fluidized bed reactor at 1023-1173 K with 0.5 mm sand particles as the bed material. The devolatilization time, mass loss history, changes in proximate volatiles content and C/H mass ratio, and temperature history at the centre of the particle during devolatilization were determined. The mass loss during devolatilization is correlated with the proximate volatiles content of the parent coal. The devolatilization time is correlated with the initial particle diameter by a power-law relation with an exponent of 1.54-1.64. The results show insignificant effect of superficial velocity on devolatilization. 相似文献
3.
The temperatures of a coal char particle in hot bubbling fluidized bed (FB) were analyzed by a model of combustion. The unsteady model includes phenomena of heat and mass transfer through a porous char particle, as well as heterogeneous reaction at the interior char surface and homogeneous reaction in the pores. The parametric analysis of the model has shown that above 550 °C combustion occurs under the regime limited by diffusion. The experimental results of temperature measurements by thermocouple in the particle center during FB combustion at temperatures in the range 590-710 °C were compared with the model predictions. Two coals of different rank were used: lignite and brown coal, with particle size in the range 5-10 mm. The comparisons have shown that the model can adequately predict the histories of temperatures in char particles during combustion in FB. In the first order, the model predicts the influence of the particle size, coal rank (via porosity), and oxygen concentration in its surroundings. 相似文献
4.
The most volatile polycyclic aromatic hydrocarbons remaining in the flue gas leaving cyclones placed at the exit of a fluidized bed coal combustor and classified by the US EPA as priority pollutants were trapped on filters and adsorbents, dissolved in dimethylformamide and analysed by synchronous fluorescence spectroscopy. The results are discussed. 相似文献
5.
Combustion tests were carried out with Minto coal in combination with three different limestones in the University of British Columbia (UBC) pilot scale (152 mm square x 7.3 m tall) circulating fluidized bed combustion (CFBC) unit. Operating conditions were chosen to be typical of those employed in large-scale CFBC power boilers. Recycling of fine particles captured by the secondary cyclone was found to be of considerable importance in increasing sulphur capture, enhancing combustion efficiency and reducing the amount of calcium sulphide in the solids residues. NOx emissions increased as the Ca:S ratio increased. Local gas concentrations inside the reactor were strongly influenced by the core-annulus solids distribution patterns which characterize circulating fluidized beds. 相似文献
6.
目前有关于富氧气氛下流化床燃烧汞的形态转化特性的报道还不是很多,因此本文开展了富氧气氛下煤种对汞形态转化特性的影响的实验研究。采用流化床作为实验设备,选用徐州烟煤和淮北烟煤作为实验燃料,研究了空气气氛下不同温度和不同煤种对汞析出规律的影响,富氧气氛下煤种对汞形态转化规律的影响,并深入分析了相应的汞氧化机理。研究结果表明:在空气气氛下,温度的增加会促进汞的氧化,煤中的含硫量对汞的氧化也有影响;在富氧气氛下,徐州烟煤燃烧产生的气态总汞浓度高于淮北烟煤燃烧产生的气态总汞浓度,徐州烟煤的Hg2+(g)的分布率也比淮北烟煤的Hg2+(g)的分布率高出16%左右,因为徐州烟煤中高含硫量会影响Hg2+(g)的分布率;富氧气氛下徐州烟煤的Hg2+的分布率低于空气气氛下的,而淮北烟煤的Hg2+(g)分布率则与之相反,这与两种煤中硫含量的不同有关。 相似文献
7.
《Fuel》1987,66(7):1011-1012
Single coals and coal mixtures were pelletized to give fuels of fixed size, density and carbon content for fluidized bed combustion experiments. Similar combustion efficiencies were generally obtained for pellets and whole coals of equal carbon content. The anomalously high carbon loss of a friable coal (British Columbia), caused by degradation and elutriation of fines, was not apparent when this coal was burned in a pelletized form. Pelletizing has no marked effect on the high carbon loss of high-rank coal. 相似文献
8.
The discrete element method-large eddy simulation (DEM-LES) is used to model coal combustion at the particle level in a bubbling fluidized bed. The gas phase is modelled as a continuum and the solid phase is modeled by DEM. Chemical reactions consist in the heterogeneous reactions of char with O2, CO, CO2, NO, and N2O, and in the homogeneous reactions involving CO, O2, NO, and N2O. The colliding particle-particle heat transfer is based on the analysis of the elastic deformation of the spheres during their contact. The model predicts the effects of the particle heterogeneous flow structure on the thermal characteristics of coal particles when heating and burning, and the gaseous emissions from a fluidized sand-coal binary mixture. The heating rates are 1627 and for, respectively, 0.8 and diameter coal particles fed into the fluidized bed. The instantaneous contribution of the collision heat transfer is weak, less than 5.0% of the total power exchanges (coal combustion, radiation, convection and collision) during the heating and 1.5% during the combustion. The temperature of the coal particles exceeds the bed temperature, which is in qualitative agreement with experimental data from literature. The effects of the diameter of coal particles, of the bed temperature, and of the inlet gas velocity on the thermal characteristics are also studied. 相似文献
9.
Nitrogen oxides are one of the most significant pollution sources during coal combustion. This experimental study was conducted in a 15 kWthlab-scale pressurized fluidized bed(inner diameter = 81–100 mm, H =2100 mm) firing with bituminous coals. The effects of operating parameters, including bed temperature(800 ℃–900 ℃), operating pressure(0.1–0.4 MPa), excess air level(16%–30%) and flow pattern on NOx and N_2 O emissions were systematically studied during the tests. During each test the interaction effects of all the operating parameters were properly controlled. The results show that most operating parameters have an opposite effect on NOxand N_2 O emissions, and the N_2 O emissions mainly depend on the bed temperature. Increasing the operating pressure can significantly suppress the fuel-N conversion to NOxbut enhance its conversion to N_2 O. With the rise of the excess air level and fluidization number, NOxemissions grow distinctly while N_2 O emissions remain almost unchanged. Total nitrogen oxide emissions increase with the bed temperature while decrease with the operating pressure. 相似文献
10.
在固定床吸附反应器内对两台300MW等级燃煤发电机组循环流化床锅炉和煤粉锅炉飞灰样品进行气相零价汞吸附实验,通过改变实验工况研究温度、入口汞浓度和入口气体流量对飞灰汞吸附能力的影响。采用颗粒内扩散模型、准一阶和准二阶动力学模型、耶洛维奇(Elovich)模型对实验数据分别进行拟合,从动力学的角度探讨两种锅炉飞灰对气相零价汞吸附的影响机制以及两种锅炉飞灰与气相零价汞之间吸附动力学行为差异。结果表明:相同工况下循环流化床锅炉飞灰汞吸附过程的穿透时间和平衡吸附量远大于煤粉锅炉飞灰。吸附温度为150℃时,两种锅炉飞灰对气相零价汞的平衡吸附量最大。由于外扩散阻力随气体入口流量的增加而减小,入口汞浓度的增加可提高传质推动力,飞灰对汞的吸附得以增强。动力学分析表明飞灰的零价汞吸附由外扩散、内扩散和表面化学吸附共同控制,其中表面化学吸附是该吸附过程中的控制步骤;准二阶动力学模型和Elovich动力学模型更适合于描述该吸附过程。相同实验条件下,循环流化床锅炉飞灰吸附过程拟合所得的颗粒内扩散系数、准一阶动力学常数和初始吸附速率均大于煤粉锅炉飞灰。 相似文献
11.
利用微型流化床反应装置,结合快速过程质谱仪,在850~940℃操作温度下,研究了三种不同粒度分布烟煤和无烟煤在热解、气化和燃烧反应条件下四种主要气态氮产物HCN、NH3、NO和NO2的释放规律。结果表明,微型流化床可以实时检测挥发分氮和焦炭氮的动态释放序和类型,热解、气化和燃烧反应气氛的改变主要影响HCN和NH3的释放量。热解产物的气态氮主要是来自于挥发分,燃烧反应的HCN和NH3的释放量与温度有明显关系,而气化反应的各类气态氮释放量随温度变化波动不大。煤颗粒尺寸和温度变化对烟煤和无烟煤中各类气态氮释放量产生影响比较复杂,其中NH3的释放特性是区分挥发分N释放和半焦N释放的重要特征。 相似文献
12.
Lunbo Duan Wu Zhou Haixin Li Xiaoping Chen Changsui Zhao 《Korean Journal of Chemical Engineering》2011,28(9):1952-1955
To clarify the sulfur transformation behavior during oxy-fired circulating fluidized bed (CFB) combustion, experiments on SO2 emission characteristics were carried out in a 50 kWth CFB combustor. Results show that SO2 emission is quite dependent on the bed temperature in different atmospheres without limestone injection. With Ca/S=2.5, SO2 emission in 21%O2/79%CO2 atmosphere is smaller than that in air atmosphere, but SO2 emission decreases with the increase of O2 concentration. The calcium forms in the ash prove the combination of calcination/carbonation and direct sulfation mechanism of limestone under oxy-combustion conditions. And the desulfurization efficiency of limestone (as deducting the self-retention efficiency from the total sulfur removal efficiency) increases from 40% to 52% as the O2 concentration increases from 21% to 40%. 相似文献
13.
Single particle devolatilization followed by combustion of the residual coal char particle has been analyzed in a batch-fluidized bed. The kinetic scheme with distributed activation energy is used for coal devolatilization while multiple chemical reactions with volume reaction mechanism are considered for residual char combustion. Both the models couple kinetics with heat transfer. Finite Volume Method (FVM) is employed to solve fully transient partial differential equations coupled with reaction kinetics. The devolatilization model is used to predict the devolatilization time along with residual mass and particle temperature, while the combined devolatilization and char combustion model is used to predict the overall mass loss and temperature profile of coal. The computed results are compared with the experimental results of the present authors for combustion of Indian sub-bituminous coal (15% ash) in a fluidized bed combustor as well as with published experimental results for coal with low ash high volatile matter. The effects of various operating parameters like bed temperature, oxygen mole fraction in bulk phase on devolatilization time and burn-out time of coal particle in bubbling fluidized bed have been examined through simulation. 相似文献
14.
A case study was carried out to investigate the bed agglomeration observed in a fluidized bed incinerator when burning blends of three wastes (carbon soot, biosludge and fuel oil). Several instrumental approaches were employed (i.e. XRF, SEM, XRD, and ICP-AES) to identify the bed materials (fresh sand and degrader sand) and clinkers formed in the full-scale incinerator tests. Several elements (V, Al, S, Na, Fe, Ni, P, and Cl), which normally are associated with the formation of low melting point compounds, were found in the waste blends at high content levels. The clinker bridges were identified to be associated with Al, Fe, V, K, Na, S, Ni, and Si elements.The effects of temperature and blending ratio were investigated in a muffle furnace. Carbon soot is believed to be more susceptible to the clinker formation than the other two fuels. Thermodynamic multi-phase multi-component equilibrium calculations predict that the main low melting point species could be Al2(SO4)3, Fe2(SO4)3, Na2SO4, NaCl, Na2SiO3 and V2O5. This information is useful to understand the chemistry of clinker formation. Also, it helps to develop methods for the control and possible elimination of the agglomeration problem for the design fuels. 相似文献
15.
Enhancement of combustion efficiency with mixing ratio during fluidized bed combustion of anthracite and bituminous blended coal 总被引:1,自引:0,他引:1
Jeong-Gook Jang Mi-Ran Kim Ki-Ho Lee Jea-Keun Lee 《Korean Journal of Chemical Engineering》2002,19(6):1059-1065
In order to investigate the effect of mixing ratio of bituminous coal to blended coal on the enhancement of combustion efficiency,
combustion experiments of blended coal with anthracite and bituminous are done in a laboratory scale fluidized bed combustor
(10.8 cm ID and 170 cm height). The gross heating values of anthracite and bituminous coal used in this study are 2,810 cal/g
and 6,572 cal/g, respectively. Experimental parameters are fuel feed rate, superficial gas velocity and mixing ratio of bituminous
coal to blended coal. The combustion efficiency increases with the mixing ratio of bituminous coal due to the lower unburned
carbon losses and higher burning velocity of bituminous coal. The rate of combustion in the combustor was increased with mixing
ratio resulted from a higher burning velocity of bituminous coal. The measured combustion efficiency experimentally is about
3.5-12.4% higher than that of the calculated value based on the individual combustion of anthracite and bituminous coal under
the same operating conditions. The optimum mixing ratio (MR) of bituminous coal determined is around 0.75 in this study.
This paper is dedicated to Professor Dong Sup Doh on the occasion of his retirement from Korea University. 相似文献
16.
A poly-generation process of simulated circulating fluidized bed (CFB) combustion combined with coal pyrolysis was developed in a laboratory scale. Pyrolysis characteristics of three bituminous coals with high volatile contents were investigated in a fixed bed with capacity of 10 kg solid samples. The effects of initial temperature of solid heat carrier, pyrolysis holding time, blending (ash/coal) ratio and coal particle size on gas and tar yields were studied experimentally. The results indicate that the initial temperature of the heat carrier is the key factor that affects the gas and tar yield, and the gas composition. Most of the gas and the tar are released during the first few minutes of the pyrolysis holding time. For caking coal, the amount of char agglomerating on the pyrolyzer inner wall is reduced by enhancing the blending ratio. The experimental results may provide basic engineering data or information for the process design of CFB combustion combined with coal pyrolysis in a large scale. 相似文献
17.
提出了借助循环流化床在高过剩空气系数下燃烧的技术提供高温空气的新构思。搭建了循环流化床燃烧热态试验台,完成了循环流化床燃烧在高过剩空气系数下的NOx排放特性试验,结果表明:循环流化床在高过剩空气系数下燃烧温度分布均匀,燃烧稳定性好;过剩空气系数增大,氮氧化物排放增加;提升管二次风高度的增加和还原区系数的减小有利于控制氮氧化物的排放水平和减少煤中的N向NOx的转化比。在过剩空气系数为1.6、还原区系数为0.72和二次风高度为1 500 mm时,循环流化床NOx排放为339 mg/m3,煤中的N向NOx转化比为21%。循环流化床高温空气NOx的浓度对燃料高温燃烧NOx排放的影响需要进一步研究。 相似文献
18.
This work deals with the fluidized bed coating and agglomeration of solid particles. The effect of particle size on coating criteria was investigated using sand particles as the coating support and aqueous solutions containing NaCl as coating liquid. The results showed that both growth rate and efficiency increase with decreasing the particle size. The growth was mainly governed by layering for particles larger than 200 μm, whereas for finer particles it occurred by agglomeration. As the particle size became less than 90 μm, the coating operation led to uncontrolled growth and bed quenching. However, the coating of the same particles was successfully achieved by adding some coarser particles. In addition, a mathematical model based on the population balance concept, taking into account the simultaneous growth by layering and agglomeration, was established to predict the time evolution of the particle size distribution. The comparison between experimental and calculated data permitted the establishment of a law for the size dependency of the agglomeration kernel. 相似文献
19.
Hiroyuki Kage Ryuhei Abe Ryusuke Hattanda Tao Zhou Hironao Ogura Yoshizo Matsuno 《Powder Technology》2003,130(1-3):203-210
Circulating fluidized bed was proposed to be used as a coater, and coating experiments of glass beads with silica powder were performed in a circulating fluidized bed. Glass beads and silica powder were chosen as model particles, because their shape was almost spherical. The respective effects of gas flow rates supplied from a distributor and from an air nozzle for solid circulation, feed rate of powder suspension and particle content in the bed on coating efficiency and agglomeration are mainly discussed. Coating efficiency in circulating fluidized bed coater was correlated well with solid circulation time rather than with gas flow rates or solid circulation rate, while the agglomeration among core particles was mainly governed by solid circulation rate. 相似文献