首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Discharging the effluents of textile wastewaters into potable water resources can endanger the ecosystem, due to their reactivity, toxicity, and chemical stability. In this research, the application of powder activated carbon modified with magnetite nanoparticles (PAC-MNPs) as an adsorbent for removal of reactive dyes (Reactive black 5 (RB5) and reactive red 120 (RR120)) was studied in a batch system. The adsorption performance was evaluated as a function of temperature, contact time and different adsorbent and adsorbate concentrations. The levels of factors were statistically optimized using Box-Behnken Design (BBD) from the response surface methodology (RSM) to maximize the efficiency of the system. The adsorption process of both dyes was fit with the pseudo-second order kinetic and Langmuir isotherm models. The identified optimum conditions of adsorption were 38.7 °C, 46.3 min, 0.8 g/L and 102 mg/L for temperature, contact time, adsorbent dose, and initial dyes concentration, respectively. According to the Langmuir isotherm, the maximum sorption capacities of 175.4 and 172.4 mg/g were obtained for RB5 and RR120, respectively. Thermodynamics studies indicated that the adsorption process of the reactive dyes was spontaneous, feasible, and endothermic. After five cycles, the adsorption efficiency was around 84 and 83% for RB5 and RR120, respectively. A high value of desorption was achieved, suggesting that the PAC-MNPs have a good potential in regeneration and reusability, and also can be effectively utilized in industrial applications. PAC-MNPs also show a good anti-interference potential for removal of reactive dyes in dye-industry wastewaters.  相似文献   

2.
Preparation of a biopolymer chitosan‐polypropylene imine (CS‐PPI) as a biocompatible adsorbent and its reactive textile dyes removal potential were performed. Chemical specifications of CS‐PPI were determined using Fourier transform infrared, 1H‐NMR, and 13C‐NMR. The surface morphology of the CS‐PPI surface was characterized by scanning electron microscopy. Results confirmed that the linkages between the NH2 groups of PPI dendrimer and carboxylic groups of modified Chitosan were accomplished chemically. Two textile reactive dyes, reactive black 5 (RB5) and reactive red 198 (RR198), were used as model compounds. A response surface methodology was applied to estimate the simple and combined effects of the operating variables, including pH, dye concentration, time contact, and temperature. Under the optimal values of process parameters, the dye removal performance of 97 and 99% was achieved for RB5 and RR198, respectively. Furthermore, the isotherm and kinetic models of dyes adsorption were performed. Adsorption data represented that both examined dye followed the Langmuir isotherm. The adsorption kinetics of both reactive dyes were satisfied by pseudo‐second order equation. Based on this study, CS‐PPI due to having high adsorption capacity (6250 mg/g for RB5 and 5882.35 mg/g for RR198), biocompatibility and ecofriendly properties might be a suitable adsorbent for removal of reactive dyes from colored solutions. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

3.
Adsorption characteristics of four different dyes Safranin O (cationic), Neutral Red (neutral), Congo Red (anionic) and Reactive Red 2 (anionic) on Si-MCM-41 material having very high surface area are reported. The surface morphology of Si-MCM-41 material before and after adsorbing dye molecules are characterised by FTIR, HRXRD, nitrogen adsorption–desorption isotherms, FESEM, and HRTEM. The adsorption capacities of Si-MCM-41 for the dyes followed a decreasing order of NR > SF > CR > RR2. The adsorption kinetics, isotherm and thermodynamic parameters are investigated in detail for these dyes using calcined Si-MCM-41. The kinetics and isotherm data showed that both SF and NR adsorb more rapidly than CR and RR2, in accordance with pseudo-second-order kinetics model as well as intraparticle diffusion kinetics model and Langmuir adsorption isotherm model respectively. The thermodynamic data suggest that the dye uptake process is spontaneous. The high adsorption capacities of dyes on Si-MCM-41 (qm = 275.5 mg g?1 for SF, qm = 288.2 mg g?1 for NR) is explained on the basis of electrostatic interactions as well as H-bonding interactions between adsorbent and adsorbate molecules. Good regeneration capacity is another important aspect of the material that makes it potent for the uptake of dyes from aqueous solution.  相似文献   

4.
Dyes often include toxic,carcinogenic compounds and are harmful to humans' health.Therefore,removal of dyes from textile industry wastewater is essential.The present study aimed to evaluate the efficiency of the combination of zero valent iron(ZVI) powder and multi-walled carbon nanotubes(MWCNTs) in the removal of Reactive Red 198(RR198) dye from aqueous solution.This applied research was performed in a batch system in the laboratory scale.This study investigated the effect of various factors influencing dye removal,including contact time,p H,adsorbent dose,iron powder dose,initial dye concentration,and temperature.The equilibrium adsorption data were analyzed using three common adsorption models:Langmuir,Freundlich and Temkin.Besides,kinetic and thermodynamic parameters were used to establish the adsorption mechanism.The results showed,in pH =3,contact time = 100 min,ZVI dose = 5000 mg·L~(-1),and MWCNTs dose = 600 mg·L~(-1)in 100 mg·L~(-1)dye concentration,the adsorption efficiency increased to 99.16%.Also,adsorption kinetics was best described by the pseudo-second-order model.Equilibrium data fitted well with the Freundlich isotherm(R2= 0.99).The negative values of ΔG0and the positive value of ΔH0(91.76) indicate that the RR198 adsorption process is spontaneous and endothermic.According to the results,the combination of MWCNTs and ZVI was highly efficient in the removal of azo dyes.  相似文献   

5.
In this work, a composite from α‐cellulose coated with conducting polypyrrole by in situ polymerization using potassium persulfate as oxidant was obtained. The composite was characterized by fourier transform infrared (FTIR) spectroscopy, cyclic voltammetry, UV/Vis spectroscopy, and scanning electron microscopy (SEM) analysis showed homogeneous coating of α‐cellulose with polypyrrole (PPy) to produce a composite with a conductivity of 3.5 × 10−5 S/m. Batch aqueous adsorption experiments of the reactive red 120 (RR120) dye onto the synthesized material were conducted. The results showed that this composite is an efficient adsorbent for RR120 dye removal. For the adsorption experiments set to an initial pH of 3.9, the adsorption capacity was 15.6 mg of dye/g of composite for an equilibrium concentration (in the liquid) of RR120 dye equal to 1,000 mg/L, whereas a value of 96.1 mg of dye/g of composite was obtained when the solution pH was set to 2.0 for the same equilibrium concentration. When performing adsorption experiments using pure α‐cellulose, dye adsorption was insignificant at any pH value. Adsorption isotherm for RR120 was described by a typical Freundlich model. The transient adsorption of RR120 on the synthesized composite was described by a general three‐resistance model that includes the transport on the film that surrounds the composite particles, diffusion inside the particles, and adsorption on the surface of the particles. A fitting of the uptake curves was performed allowing the estimation of values for the effective diffusivity, D0, and the adsorption rate coefficient, k1. For the adsorption experiments with an initial pH value set to 3.9, D0 was estimated as 1.05 × 10−10 m2/s, whereas k1 was 1.65 × 10−4 Ln/g mgn − 1 s; the corresponding values of k1 at pH = 2 and 9.0 were 3.18 × 10−4 and 5.16 × 10−5, respectively. POLYM. COMPOS., 36:312–321, 2015. © 2014 Society of Plastics Engineers  相似文献   

6.
《分离科学与技术》2012,47(12):1860-1871
Magnetically modified Trametes versicolor cells were used for biosorption of Reactive Blue 13 (RB13), Reactive Yellow 85 (RY85) and Reactive Violet 1 (RV1). Percent biosorption values and maximum adsorption capacities of 98.30% and 135.35 mg g?1 for RB13, 96.02% and 125 mg g?1 for RY85, and 98.56% and 227.27 mg g?1 for RV1 were observed under optimal conditions. The biosorption of all dyes was exothermic in nature. The biosorbent was characterized using scanning electron microscopy, energy-dispersive X-ray spectroscopy, and magnetic force microscopy. The Langmuir model was found to be most suitable for describing the biosorption of all dyestuffs. The experimental data fitted very well the pseudo second order kinetic model.  相似文献   

7.
In this study, epichlorohydrin cross-linked chitosan beads were used for the removal of Reactive Black 5 (RB 5) from aqueous solution. The adsorption of RB 5 onto the cross-linked chitosan beads was strongly pH dependent. The adsorption capacity of RB 5 onto the cross-linked chitosan beads increased with increasing temperature, indicating the endothermic nature of the adsorption process. The thermodynamic parameters, namely the Gibbs free energy, enthalpy and entropy of the RB 5 adsorption process were calculated. The kinetic parameters were measured in a batch adsorber to analyze the rate of adsorption of RB 5 onto the cross-linked chitosan beads.  相似文献   

8.
Adsorption is an important process in wastewater treatment,and conversion of waste materials to adsorbent offers a solution to high material cost related to the use of commercial activated carbon.This study investigated the adsorption behaviour of Reactive Black 5(RB5)and methylene blue(MB)onto activated carbon produced from textile sludge(TSAC).The activated carbon was synthesized through chemical activation of precursor followed with carbonization at 650°C under nitrogen flow.Effects of time(0–200 min),pH(2–10),temperature(25–60°C),initial dye concentration(0–200 mg·L~(-1)),and adsorbent dosage(0.01–0.15 g)on dye removal efficiency were investigated.Preliminary screening revealed that TSAC synthesized via H_2SO_4activation showed higher adsorption behaviour than TSAC activated by KCl and ZnCl_2.The adsorption capacity of TSAC was found to be 11.98 mg·g~(-1)(RB5)and 13.27 mg·g~(-1)(MB),and is dependent on adsorption time and initial dye concentration.The adsorption data for both dyes were well fitted to Freundlich isotherm model which explains the heterogeneous nature of TSAC surface.The dye adsorption obeyed pseudo-second order kinetic model,thus chemisorption was the controlling step.This study reveals potential of textile sludge in removal of dyes from aqueous solution,and further studies are required to establish the applicability of the synthesized adsorbent for the treatment of waste water containing toxic dyes from textile industry.  相似文献   

9.
《分离科学与技术》2012,47(1):90-100
Activated carbon prepared from tannery leather waste (TLW-AC) has been studied for its efficiency of removal of basic dyes, namely rhodamine B (RB), methylene blue (MB), and malachite green (MG) from aqueous solutions. Factors influencing dye adsorption such as the concentration of dye, pH, contact time, and temperature were investigated. The adsorption was found to be strongly dependent on the pH and temperature. The maximum sorption capacity of RB was obtained at pH 3 and for MB and MG was obtained at pH 11. Various thermodynamic parameters such as ΔG°, ΔH°, and ΔS° were calculated. The kinetic studies reveal that the adsorption process follows the pseudo second-order kinetic model. The equilibrium data have been well-described by the Langmuir and Freundlich models, and the data fitted well in both model equations. The study revealed that wastes from leather industry is an economically viable option for dye removal.  相似文献   

10.
Two reactive dyes, C.I. Reactive Red 120 (RR120) and C.I. Reactive Green 19 (RG19), each bearing two azo groups as the chromophoric moiety and two monochloro-s-triazine groups as reactive groups, can be detected at nanomolar levels using cathodic stripping voltammetry. Linear calibration graphs were obtained for both reactive dyes, from 0.015 to 0.14 μmol l−1 for RR120 in pH 4 buffer and from 0.012 to 0.26 μmol l−1 for RG19 in pH 3 buffer, using a pre-concentration at 0 V during 180 and 240 s on the mercury electrode, respectively.  相似文献   

11.
Chitosan/poly(amidoamine) (MCS/PAMAM) microparticles were prepared as magnetic adsorbents for removal of Reactive Blue 21 (RB 21) dye from aqueous solution. Characterization of these particles was carried out using scanning electron microscopy, Fourier transform-infrared spectroscopy, X-ray diffractometry and vibrating sample magnetometry. The results indicate that the magnetic chitosan microparticles (MCS) were functionalized with PAMAM dendrimers and maintained its intrinsic magnetic properties. The effects of initial pH, adsorbent dose, initial concentration, contact time and temperature on adsorption were investigated. Kinetic studies showed that the dye adsorption process followed a pseudo-second-order kinetic model but that the adsorption rate was also influenced by intraparticle diffusion. Equilibrium adsorption isotherm data indicated a good fit to the Langmuir isotherm. The maximum adsorption capacities obtained from the Langmuir model were 555.56, 588.24, 625.00 and 666.67 mg g−1 at 303, 313, 323 and 333 K, respectively. The thermodynamic parameters revealed the feasibility, spontaneity and endothermic nature of the adsorption. Recycling experiments confirmed the relative reusability of the adsorbent.  相似文献   

12.
季铵型阳离子聚丙烯酰胺的无盐染色行为   总被引:2,自引:2,他引:0  
以季铵型阳离子聚丙烯酰胺作为一种新的阳离子助剂对棉纤维进行处理,应用于活性染料无盐染色,对染色过程中染料与处理后棉纤维之间的吸附类型、吸附热力学及吸附动力学进行了研究。结果表明,无盐染色过程符合Langmuir吸附模型;吸附过程是放热自发进行的,低温有利于染料的吸附;吸附动力学符合二级动力学模型,属于化学吸附过程。与传统有盐染色结果相比,染色后的阳离子化棉纤维色深增加,染料利用率提高。  相似文献   

13.
BACKGROUND: The capacity and mechanism of adsorption of the reactive dyes monoazo (RR2) and diazo (RR141), using a new adsorbent with a strong ecological appeal developed from the sludge of the textile effluent treatment process, were investigated. The kinetics and adsorption isotherms were determined at different temperatures and salt concentrations. After determination of the best experimental conditions for adsorption for both dyes, tests were carried out in fixed‐bed adsorption columns. RESULTS: For both dyes, there was a reduction in the adsorption capacity of the adsorbent developed when the system operated at temperatures above 40 °C. When 10% (by mass) of sodium chloride was added to the adsorbate RR141 the maximum adsorption increased from 66.67 mg g?1 to 78.74 mg g?1. For both dyes, the addition of sodium sulfate did not favor significantly the adsorption. The results obtained for scale‐up of the laboratory data for the adsorption columns indicated that the operating time with reactive dye diazo is 43.5% longer than that for monoazo. CONCLUSION: The adsorbent studied was shown to be a very promising alternative in terms of an environmentally friendly process. Copyright © 2009 Society of Chemical Industry  相似文献   

14.
Effectiveness of two strongly basic anion exchange resins of the gel (Dowex PSR-2) and macroporous structure (Dowex PSR-3) was compared in order to remove three hazardous dyes such as C.I. Acid Orange 7 (AO7), C.I. Reactive Black 5 (RB5), and C.I. Direct Blue 71 (DB71) contained in water and textile wastewaters. Batch adsorption experiments were carried out to analyze the effect of phase contact time, initial dye concentration, and the presence of auxiliary materials (anionic and cationic surfactants, Na2CO3, and Na2SO4). The Langmuir model better described the adsorption process of the dyes onto both resins than the Freundlich model. The monolayer adsorption capacities (qe) of Dowex PSR-3 were calculated as 336.4 mg/g for AO7, 317.9 mg/g for RB5, and 150.4 mg/g for DB71 at 25°C. Dowex PSR-2 of the gel structure is characterized by considerably lower values of qe (50.1 mg/g for AO7, 17.2 mg/g for RB5, and 9.7 mg/g for DB71). Of special importance are high values of the working ion exchange capacities of Dowex PSR-3 determined from the breakthrough curves towards AO7 and RB5 equal to 127 and 85 mg/cm3, respectively. The pseudo second-order kinetic model described the experimental sorption data better than the pseudo first-order model. Methanol addition to the 1 M HCl and 1 M NaOH solutions improved the effectiveness of dye desorption.  相似文献   

15.
Chitosan/Spirulina bio‐blends (CSBB) in films form were developed to be an alternative/renewable biosorbent, able to remove anionic and cationic dyes from aqueous solutions. CSBB potential as biosorbent was investigated for cationic dye Methylene Blue (MB), and anionic dyes Tartrazine Yellow (TY) and Reactive Black 5 (RB5). Chitosan and Spirulina samples were obtained and characterized, and CSBB films were prepared with different chitosan/Spirulina ratios. The CSBB films characteristics, as, mechanical properties, thermal profile, crystallinity, functional groups, morphology, and biosorption potential were strongly dependent of chitosan/Spirulina ratio. CSBB films preserved its mechanical structures at pH from 4.0 to 8.0. The biosorption capacities were 120, 110, and 100 mg g?1 for RB5, TY, and MB, respectively. The increase of chitosan amount favored the TY and RB5 biosorption; however, the increase of Spirulina amount favored the MB biosorption. Thus, the CSBB in film form is a renewable biosorbent suitable to remove anionic and cationic dyes from aqueous solutions. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44580.  相似文献   

16.
A cationic polyelectrolyte, poly (diallyldimethylammoniumchloride) (PDADMAC) and a smectite‐type layered silicate (sodium activated montmorillonite clay (Sodium‐Montmorillonite, NaMt)), intercalated composites (PDADMAC/NaMt) were prepared. Basal spacings (d001) of NaMt in composites were measured by X‐Ray diffraction analysis (XRD). Ultrasonic addition of low molecular weight PDADMAC into the NaMt structure (at very low concentration and very low PDADMAC(g)/NaMt(g) ratios) resulted in good adsorbing properties both for positively and negatively charged dyes. The adsorption kinetics of the prepared composites both for negatively charged [remazol black (RB)] and positively charged [methylene blue (MB)] reactive dyes were investigated. The RB adsorption efficiency of the positively charged composite is approximately three times that of the pure NaMt while its MB adsorption efficiency is as good as that of pure NaMt. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
The reductive decolourisation of textile dyestuffs containing an azo group was investigated by direct cathodic electron transfer CI Acid Red 27 and CI Acid Yellow 9 were used as model compounds for azo dyes. Reactive dyes, eg CI Reactive Red 4, CI Reactive Orange 4, and CI Reactive Black 5, which are in technical use for cellulose dyeing were investigated as representatives of practical importance. A basic characterisation of the reduction–decolourisation behaviour of the dyes was achieved by redox titration with Fe(II)–triethanolamine as reducing agent and parallel spectrophotometric observation of changes in the chromogenic system. From the redox titration experiments basic data describing the experimental conditions for successful cathodic electron transfer can be derived. The electrochemical dyestuff reduction experiments were performed in batch trials using a multi‐cathode electrolyser with high cathode area. According to the typical composition of such dyebaths 0.12 mol dm?3 NaOH was used as ground electrolyte. The absorbance of the investigated dyestuff solutions could be decreased to below 20% of the initial value. For a 50% decrease in absorbance, electrical energy of about 6 kWh m?3 is consumed. The process is of particular interest for the treatment of concentrated dyestuff solutions as they are used in continuous dyeing processes. © 2001 Society of Chemical Industry  相似文献   

18.
The process of removal of two azo dyes (Reactive Red 198 and Direct Green 99) from water was investigated. The adsorption of azo dyes onto surfaces of pristine TiO2, P25 and carbon-modified TiO2 (at 120 °C for 24 h) was presented. The Freundlich model of adsorption isotherm was found for pristine TiO2 and TiO2-P25. Modification of TiO2 by carbon lead to the change from the Freundlich model to the Langmuir model of adsorption isotherm. For the TiO2-C photocatalyst the adsorption capacity was determined, which was almost two times higher for Direct Green 99 than Reactive Red 198 dyes. As a result we observed the increase of photocatalytic activity of carbon-modified TiO2 photocatalyst.  相似文献   

19.
The aim of this study was to prepare a novel resin for the removal of reactive dyes from aqueous media. To prepare the resin, poly(2‐hydroxyethyl methacrylate/ethylene glycol dimethacrylate) beads were grafted with poly(glycidyl methacrylate) by surface‐initiated atom transfer radical polymerisation. Epoxy groups of the grafted polymer were modified with tris(2‐aminoethyl)amine ligand. The modified resin was characterised by swelling studies, FT‐IR and SEM. Three different reactive dyes were selected (CI Reactive Brown 10, CI Reactive Red 120 and CI Reactive Green 5) and used in the removal studies. The effects of pH, temperature, ionic strength and initial dye concentration on the adsorption capacity of the resin were investigated. The adsorption capacity of the resin for Reactive Brown 10, Reactive Red 120 and Reactive Green 5 was 0.029 ± 0.010, 0.032 ± 0.0019 and 0.042 ± 0.0013 mmol/g resin (34.1 ± 1.2, 47.6 ± 2.3 and 69.3 ± 1.7 mg/g resin) respectively. The equilibrium adsorption data were analysed by Langmuir, Dubinin–Radushkevich, Freundlich and Temkin isotherm models. A good fit was found between the Langmuir isotherm and data for the three dyes on resin. The adsorption kinetic data were modelled using pseudo‐first‐order, pseudo‐second‐order and intraparticle diffusion kinetic equations. It was found that the pseudo‐second‐order equation could describe the adsorption kinetics. The results indicated that the modified resin is an attractive alternative for removing reactive dyes from wastewater.  相似文献   

20.
This study involves the photocatalytic degradation of Reactive Black 5 (RB5) and Reactive Orange 4 (RO4) dyes, employing heterogeneous photocatalytic process. Photocatalytic activity of different semiconductors such as titanium dioxide (TiO2) and zinc oxide (ZnO) has been investigated. An attempt has been made to study the effect of process parameters through amount of catalyst, concentration of dye, and pH on photocatalytic degradation of RB5 and RO4. The experiments were carried out by varying pH (3–11), amount of catalyst (0.25–1.5 g/L), and initial concentration of dye (10–100 mg/L). The optimum catalyst dose was found to be 1.25 and 1 g/L for RB5 and RO4, respectively. In the case of RB5, maximum rate of decolorization was observed in acidic medium at pH 4, whereas the decolorization of RO4 reached maximum in basic region at pH 11. The performance of photocatalytic system employing ZnO/UV light was observed to be better than TiO2/UV system. The complete decolorization of RB5 was observed after 7 min with ZnO, whereas with TiO2, only 75% dye degraded in 7 min. In the case of RO4, 92 and 62% decolorization was noticed in the same duration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号