首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Polymer Composites》2017,38(7):1302-1310
Flame retardant ethylene‐vinyl acetate (EVA) nanocomposites were prepared by melt blending using unmodified and modified sepiolite. Modification process of sepiolite was carried out by using 3‐aminopropyltrimethoxysilane in water/ethanol medium. Thermal, mechanical, and flame retardancy properties of the prepared nanocomposites were evaluated and compared with each other. X‐ray diffraction and scanning electron microscopy indicated that sepiolite fibers are well‐dispersed in EVA matrix. By the addition of (un)modified sepiolite, both flame retardancy and thermal stability characteristics first improved, and then deteriorated, indicating a direct relationship between these properties. It was also found that sepiolite protects carbonyl groups of EVA from further degradation. Most interestingly, a simultaneous increase in both ductility and toughness was observed in the prepared composites. Whatever the evaluated properties were, whether the mechanical, thermal, or flame retardancy, the improved properties were more remarkable when modified sepiolite was utilized. POLYM. COMPOS., 38:1302–1310, 2017. © 2015 Society of Plastics Engineers  相似文献   

2.
A bisphenol A‐based epoxy resin was modified with pristine sepiolite and an organically surface‐modified sepiolite and thermally cured using two different curing agents: an aliphatic and a cycloaromatic diamine. The nanocomposites were characterized by dynamic mechanical analysis (DMA), rheology, thermogravimetric analysis (TGA), and electron microscopy. The initial sepiolite–epoxy mixtures show a better dispersion for the sepiolite‐modified system that forms a percolation network structure. Mechanical properties have also been determined. The flexural modulus of the epoxy matrix slightly increases by the incorporation of the organophilic sepiolite. The flexural strength of the sepiolite‐modified resin cured with the aliphatic diamine increased by 10%, while the sepiolite‐modified resin cured with the cycloaromatic diamine resulted in a lower flexural strength, as compared with the unmodified resin. Electron micrographs revealed a better nanodispersion of the sepiolite in the epoxy matrix for the organophilic modified sepiolite nanocomposite. The initial thermal decomposition temperature did not change significantly with the addition of sepiolite, whereas mechanical properties were affected. The reduced flexural strength was attributed to the stress concentrations caused by the sepiolite modifier. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

3.
Poly(propylene carbonate) (PPC) is a new biodegradable aliphatic polycarbonate. However, the poor thermal stability, low glass transition temperatures (Tg), and relatively low mechanical property have limited its applications. To improve the thermal and mechanical properties of PPC, functionalized graphite oxide (MGO) was synthesized and mixed with PPC by a solution intercalation method to produce MGO/PPC composites. A uniform structure of MGO/PPC composites was confirmed by X‐ray diffraction and scanning electron microscope. The thermal and mechanical properties of MGO/PPC composites were investigated by thermal gravimetric analysis, differential scanning calorimetric, dynamic mechanical analysis, and electronic tensile tester. Due to the nanometer‐sized dispersion of layered graphite in polymer matrix, MGO/PPC composites exhibit improved thermal and mechanical properties than pure PPC. When the MGO content is 3.0 wt %, the MGO/PPC composites shows the best thermal and mechanical properties. These results indicate that nanocomposition is an efficient and convenient method to improve the properties of PPC. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

4.
制备了聚丙烯(PP)/改性海泡石复合材料,采用SEM、XRD、DSC、TG等测试方法对该复合材料的结构和性能进行了研究。结果表明:改性处理的海泡石在PP基材中分散均匀;少量改性海泡石的引入增大了PP的结晶度以及微晶尺寸,并且提高了PP材料的热稳定性和力学性能。  相似文献   

5.
The novel surface‐modified sepiolite/unsaturated polyester (sepiolite/UP) nanocomposites were prepared by in situ polymerization. Sepiolite fibers were first organo‐modified by grafting of vinyltriethoxysilane (VTS) containing a double bond onto the surfaces and used as nanofillers. The morphology of sepiolites and nanocomposites were characterized by X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), and transmission electron microscope (TEM). Moreover, the thermal properties were determined by thermogravimetric analysis (TGA) and the thermal degradation mechanism was discussed. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
Effects of nanoparticle surface treatment on the crystallization behavior and mechanical properties of polypropylene (PP)/CaCO3 nanocomposites were investigated by using differential scanning calorimetry (DSC), polarized optical microscope (POM), X‐ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The results demonstrated that the interfacial interaction formed between PP and nanoparticles significantly influenced the thermal and mechanical properties of nanocomposites. It was found that CaCO3 nanoparticles modified by a single aluminate coupling agent (CA‐1) could improve the onset crystallization temperature more effectively than that modified by a compound surface‐treating agent (CA‐2) could. However, there is no significant difference in total rate of crystallization for the two PP/CaCO3 nanocomposites (PPC‐1 and PPC‐2), which contained CA‐1 and CA‐2, respectively. In contrast, CA‐2 modified nanoparticles could cause smaller spherulites and induce much more β‐phase crystal in nanocomposites than that of CA‐1 modified nanoparticles. This may be explained by a synergistic effect of aluminate coupling agent and stearic acid in CA‐2, which also resulted in an improved toughness for PPC‐2. © 2006 Wiley Periodicals, Inc. J Appl PolymSci 102: 3480–3488, 2006  相似文献   

7.
Poly(propylene carbonate) (PPC), a CO2‐based bioplastic and poly(hydroxybutyrate‐co‐hydroxyvalerate) (PHBV) were melt blended followed by injection molding. Fourier transform infrared spectroscopy detected an interaction between the macromolecules from the reduction in the OH peak and a shift in the C?O peak. The onset degradation temperature of the polymer blends was improved by 5% and 19% in comparison to PHBV and PPC, respectively. Blending PPC with PHBV reduced the melting and crystallization temperatures and crystallinity of the latter as observed through differential scanning calorimetry. The amorphous nature of PPC affected the thermal properties of PHBV by hindering the spherulitic growth and diluting the crystalline region. Scanning electron micrographs presented a uniform dispersion and morphology of the blends, which lead to balanced mechanical properties. Incorporating PHBV, a stiff semi‐crystalline polymer improved the dimensional stability of PPC by restricting the motion of its polymer chains. © 2016 The Authors Journal of Applied Polymer Science Published by Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44420.  相似文献   

8.
Wood flour reinforced poly(propylene carbonate) (PPC) composites were prepared by melt blending followed by compression molding. The effects of reinforcement on the morphology, static and dynamic mechanical properties, and thermal properties of PPC/wood flour composites were investigated. In terms of mechanical properties, wood flour had the significant effect of improving tensile strength and stiffness. Scanning electron microscopic examination revealed good dispersion of wood flour (especially at lower content) in the PPC matrix. Moreover, experimental results indicated that the wood flour addition led to an obvious improvement in the thermal stability of the composites. This paper demonstrates that the incorporation of low‐cost and biodegradable wood flour into PPC provides a practical way to produce completely biodegradable and cost‐competitive composites with good mechanical properties. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 782–787, 2006  相似文献   

9.
Biodegradable blends of poly(propylene carbonate) (PPC) and poly(ethylene‐co‐vinyl alcohol) (EVOH) were melt compounded in a batch mixer followed by compression molding. The processability, mechanical properties, thermal behavior, and morphologies of the blends were investigated with torque rheometer, Fourier transform infrared spectroscopy, tensile tests, dynamic mechanical analysis, thermogravimetric analysis, differential scanning calorimetry, and scanning electron microscopy. Torque rheometry indicated good interfacial miscibility between PPC and EVOH phases, and then fourier transform infrared spectroscopy spectra demonstrated that a certain extent of hydrogen‐bonding interactions between PPC and EVOH matrix in the blends. A study of the mechanical properties and thermal behavior showed that the EVOH incorporation can significantly enhance the tensile strength, thermal stability, and crystallinity of the blends. Moreover, dynamic mechanical analysis and differential scanning calorimetry both revealed that PPC and EVOH were compatible to some extent. Further, scanning electron microscopic examination also revealed the good interfacial adhesion between EVOH and PPC phases. POLYM. ENG. SCI., 47:174–180, 2007. © 2007 Society of Plastics Engineers  相似文献   

10.
Two different methodologies (reactive blending and mechanical blending) for preparing blends of poly(β‐hydroxybutyrate‐co‐β‐hydroxyvalerate) (PHBV) and poly(propylene carbonate) (PPC) were used. The miscibility, chemical structure, thermal behavior, crystallinity, morphology, and mechanical properties of the blends were investigated with Fourier transform infrared spectroscopy, differential scanning calorimetry, polarized optical microscopy, scanning electron microscopy, and tensile tests. A certain extent of hydrogen‐bonding interactions between PHBV and PPC took place in the blends. The graft copolymerization was confirmed in the reactive system. The incorporation of PPC hampered the crystallization process of PHBV and evidently altered the morphology, and the effect was enhanced in the reactive blend. The mechanical properties of PHBV could be changed by 1–2 orders of magnitude by blending modification. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1427–1436, 2005  相似文献   

11.
Poly(propylene carbonate) (PPC) is inferior in thermal stability and liable to incur thermal degradation, especially in the existence of residual bimetal catalyst. In this article, PPC containing residual catalyst was end‐capped with 4, 4′‐diphenylmethane diisocyanate (MDI) through melt compounding. The blends were characterized by infrared spectra, melt flow index (MFI), gel permeation chromatography (GPC), gel content measurement, thermogravimetric analysis, scanning electron microscopy, and tensile test. The effect of MDI on thermal stability, molecular weight, and tensile properties of PPC was studied. Thermal degradation kinetics of neat PPC and PPC+MDI blending samples was discussed with Friedman method. MFI, GPC, and gel content measurements showed that mainly end‐capping reaction was carried out on PPC chains when 0.1% of MDI was added. However, as the amount of MDI exceeded to 0.3%, end‐capping, chain‐extension, and crosslinking reactions were synchronously carried out on PPC. Results showed that the end‐capping, chain‐extension, and crosslinking reaction occurring between PPC and MDI could effectively inhibit the unzipping degradation even when the residual catalyst was not removed thoroughly. When the content of MDI reached 1.0%, the initial degradation temperatures (T5%) increased from 176.26°C for neat PPC to 259.56°C. As a result, the processing temperature range and processing time were largely extended, and the heat resistance of PPC was improved remarkably. Meanwhile, the tensile property of the modified PPC was enhanced obviously. It may be due to the fact that the molecular weight and gel content of PPC were increased with the increasing amount of MDI. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

12.
Vegetable derivatives like peanut protein concentrates constitute an alternative for incorporation in starch‐based systems. In order to assess the capacity of peanut protein concentrate (PPC) to be incorporated in starch systems, the thermo‐mechanical behavior of pastes made with starches from different botanical sources (between 4.6 and 6 % w/w of corn, cassava and wheat starch), PPC (5.2–12.1 % w/w, which contributed between ~3 and ~6 % of final protein content), and sucrose (12.4–15 % w/w) was analyzed. Peanut proteins modified thermal behavior of starches as measured by the differential scanning calorimetry (DSC) technique. PPC increased the concentration of starch in the continuous phase and, consequently, the overall viscosity of the system during pasting. In addition, PPC increased the consistency of starch gels, although weaker structures were obtained. The syneresis of starch gels was reduced by PPC, which is advantageous for its incorporation in starch‐based systems.  相似文献   

13.
Organically modified and unmodified montmorillonite clays (Cloisite NA, Cloisite 30B and Cloisite 15A), sepiolite (Pangel B20) and nanosilica (Aerosil 300) were incorporated into hydrogenated nitrile rubber (HNBR) matrix by solution process in order to study the effect of these nanofillers on thermal, mechanical and dynamic mechanical properties of HNBR. It was found that on addition of only 4 phr of nanofiller to neat HNBR, the temperature at which maximum degradation took place (Tmax) increased by 4 to 16°C, while the modulus at 100% elongation and the tensile strength were enhanced by almost 40–60% and 100–300% respectively, depending upon nature of the nanofiller. It was further observed that Tmax was the highest in the case of nanosilica‐based nanocomposite with 4 phr of filler loading. The increment of storage modulus was highest for sepiolite‐HNBR and Cloisite 30B‐HNBR nanocomposites at 25°C, while the modulus at 100% elongation was found maximum for sepiolite‐HNBR nanocomposite at the same loading. A similar trend was observed in the case of another grade of HNBR having similar ACN content, but different diene level. The results were explained by x‐ray diffraction, transmission electron microscopy, and atomic force microscopy studies. The above results were further explained with the help of thermodynamics. Effect of different filler loadings (2, 4, 6, 8, and 16 phr) on the properties of HNBR nanocomposites was further investigated. Both thermal as well as mechanical properties were found to be highest at 8 phr of filler loading. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
To extend the application of a carbon dioxide sourced environmental friendly polymer: poly (propylene carbonate) (PPC), a small amount of maleic anhydride (MA) was melt blended to end‐cap with PPC to improve its thermal stability and mechanical properties. Thermal and mechanical properties of end‐capped PPC were investigated by TGA, GPC, mechanical test, and DMA. TGA and titration results demonstrate that PPC can be easily end‐capped with MA through simple melt blending. TGA results show that the thermal degradation temperature of PPC could be improved by around 140°C by adding MA. GPC measurement indicates that the molecular weight of PPC can be maintained after blending with MA, where pure PPC experiences a dramatic degradation in molecular weight during melt process. More importantly, the tensile strength of PPC after blending with MA was found to be nearly eight times higher than that of pure PPC. It has approached the mechanical properties of polyolefin polymers, indicating the possibility of replacing polyolefin polymers with PPC for low temperature applications. The method described here could be used to extend the applications of PPC and fight against the well known global warming problem. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
Poly(lactic acid) (PLA) nanocomposite ternary blends based on unmodified sepiolite were prepared by melt blending using a corotating twin‐screw extruder. Two grafted polymers were used as compatibilizer agents, in an effort to increase the PLA tensile toughness. The influence of incorporating a low‐cost commodity low‐density polyethylene, as dispersed phase to the composites on thermal degradation, and rheological and tensile properties was studied. The morphology of the blends and composites was determined through transmission and scanning electron microscopy techniques. Results showed that the compatibilized blends prepared without clay have higher thermal degradation susceptibility and tensile toughness than those prepared with sepiolite and significant changes in complex viscosity and melt elasticity values were observed between them. The nanocomposite blends exhibited similar thermal degradation, lower tensile strength, and Young's modulus values and increased elongation at break and tensile toughness, complex viscosity, and storage modulus compared with those of the nanocomposite of PLA. These results are related to the clay dispersion, to the type of morphology of the different blends, to the localization of the sepiolite in the different phases, the thermomechanical degradation of the PLA matrix phase during melt blending and the grafting degree of the compatibilizers used. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

16.
High yield and pure zinc glutarate catalysts used for copolymerization of carbon dioxide and propylene oxide have been synthesized in different solvents by ultrasonic methodology. For the purposes of comparison, low‐yield zinc glutarates were also synthesized via mechanical stirring method with other synthetic conditions remaining unchanged. Fourier Transform Infrared Spectroscopy and wide‐angle X‐ray diffraction techniques confirmed the presence of high‐quality zinc glutarate catalysts. Accordingly, poly(propylene carbonate) (PPC) can be synthesized from carbon dioxide and propylene oxide using the zinc glutarate catalysts. It was confirmed that the as‐prepared PPC had an alternating copolymer structure together with high molecular weight. The thermal and mechanical properties of the obtained PPC copolymer were determined by means of differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and tensile test. DSC and TGA results showed that the PPC copolymer exhibited high glass transition temperature (39.39°C) and decomposition temperature (278°C) when compared to their corresponding values reported in the literature. Tensile test showed that the PPC film exhibited superior mechanical strength. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2327–2334, 2002  相似文献   

17.
Clay containing polypropylene (PP) nanocomposites were prepared by direct melt mixing in a twin screw extruder using different types of organo‐modified montmorillonite (Cloisite 15 and Cloisite 20) and two masterbatch products, one based on pre‐exfoliated clays (Nanofil SE 3000) and another one based on clay–polyolefin resin (Nanomax‐PP). Maleic anhydride‐grafted polypropylene (PP‐g‐MA) was used as a coupling agent to improve the dispersability of organo‐modified clays. The effect of clay type and clay–masterbatch product on the clay exfoliation and nanocomposite properties was investigated. The effect of PP‐g‐MA concentration was also considered. Composite morphologies were characterized by X‐ray diffraction (XRD), field emission gun scanning electron microscopy (FEG‐SEM), and transmission electron microscopy (TEM). The degree of dispersion of organo‐modified clay increased with the PP‐g‐MA content. The thermal and mechanical properties were not affected by organo‐modified clay type, although the masterbatch products did have a significant influence on thermal and mechanical properties of nanocomposites. Intercalation/exfoliation was not achieved in the Nanofil SE 3000 composite. This masterbatch product has intercalants, whose initial decomposition temperature is lower than the processing temperature (T ~ 180°C), indicating that their stability decreased during the process. The Nanomax‐PP composite showed higher thermal and flexural properties than pure PP. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
Poly‐lactic acid (PLA) nanocomposite film was prepared with untreated and silane treated sepiolite through solution casting method. Sepiolite is found to be promising nano inorganic filler used to prepare biodegradable PLA nanocomposite films. The effect of sepiolite loading on the thermal, mechanical, gas permeability, and water vapor permeability (WVP) properties of the films was investigated. X‐ray diffraction analysis revealed the crystallinity index and well dispersed sepiolite in PLA/sepiolite thin films. By modifying sepiolite, depending on the nanoclay content, the mechanical properties of films were enhanced. PLA/sepiolite films exhibited improved gas barrier and WVP properties compared to neat PLA. The scanning electron microscope results demonstrated that there is a good interface interaction between sepiolite and PLA. The surface treatment of sepiolite increased the adhesion of the PLA matrix to the sepiolite nanoclay which yielded better mechanical properties of the films as compared to pure PLA. It was observed after 1.5% wt sepiolite, nano‐filler tended to agglomerate, therefore mechanical and barrier properties of films decreased. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41428.  相似文献   

19.
《Polymer Composites》2017,38(9):1957-1963
In this study, novel composite materials of polypropylene (PP) with asphaltenes taken from Arab heavy atmospheric residue were prepared and characterized. Composites with various relative amounts of asphaltenes to PP were formed using the melt‐mixing technique. The chemical structure, crystalline form, and morphology of these materials were examined using Fourier transform infrared (FTIR) spectroscopy, X‐ray diffraction (XRD), and scanning electron microscopy (SEM) measurements. Their thermal properties were measured with differential scanning calorimetry (DSC), their thermal degradation characteristics with thermogravimetric analysis (TGA), and the mechanical properties using an Instron dynamometer. It was found that the crystalline and chemical structure of PP is not affected by the presence of asphaltenes, whereas the thermal stability, crystallinity, and tensile mechanical properties are enhanced with the amount of asphaltenes. Particularly, the addition of 5 wt% asphaltenes could improve tensile strength and the Elastic modulus by almost 10%. Better dispersion is achieved at relative low percentages of asphaltenes. It was found that the optimum amount of asphaltenes to result in composites with good dispersion, enhanced thermal stability, tensile strength, and relative crystallinity was 5 wt%. Most of these properties seem to deteriorate when the amount of asphaltenes added is high (i.e., 10%–15%). Therefore, a new use of a by‐product of the petroleum refinery industry is proposed resulting in improved properties of a commodity polymer. POLYM. COMPOS., 38:1957–1963, 2017. © 2015 Society of Plastics Engineers  相似文献   

20.
Poly(propylene carbonate) (PPC) was modified by l ‐aspartic acid (Asp) and poly(butylene succinate) (PBS). To assess the effects of Asp and PBS on the thermal stability, mechanical properties of PPC, different PPC/Asp, PPC/PBS, and PPC/PBS/Asp blends were prepared by twin‐screw extruder. The results indicated that the thermal stability improved with the Asp content increasing from 0.5 to 5%. With trace presence of 2% Asp, the degradation temperature of PPC was greatly increased upon extruding and the Yield strength and Young's modulus increased 62 and 849 times, respectively, at 20°C. The flexibility of PPC was effectively improved by blending with PBS, the PBS has no significant effect on the thermal stability of PPC until PBS up to enough amount. Besides the Asp additive in PPC/PBS blends not only improved the thermal stability PPC, but improved the interfacial compatibility of the blend. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42970.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号