首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present work summarises the results of an experiment of light‐soaking high‐concentrator MOVPE‐grown GaAs solar cells under monochromatic light (808 nm). The irradiance level was set so that the short‐circuit current obtained was 1100 times that produced with the AM1ċ5D spectrum at 1 kW/m2. This test caused no morphological changes in the devices. The main phenomenon discovered has been a slight increase with time of the reverse current I02. This increase is analogous to that observed in similar degradation experiments based on high forward currents. In general, the results of these tests show that the drop in performance is very limited, supporting the idea that concentrator GaAs solar cells are rugged devices, capable of achieving long lifetimes in field operation. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
This work describes the design, simulation, fabrication process, and characterization of high voltage photovoltaic mini‐modules using silicon on insulator (SOI) wafers. The mini‐modules are made of a number of small area photovoltaic cells (<1 mm2) monolithically connected in series. Isolation between cells is performed by means of anisotropic etching of the active layer of the SOI wafer. Measurements using standard sunlight (AM1·5 100 mW/cm2) confirm the viability of this technology to fabricate small area arrays showing open circuit voltages, V oc, between 620 mV and 660 mV and photocurrent densities up to 22·3 mA/cm2 for single cells of 0·225 mm2 area and 10 µm active film thickness. Series connection scales up V oc and the maximum power, P m, from 625 mV and 21·2 µW, respectively, in a single cell to 103 V and 3·2 mW when 169 cells are connected in series in a 0·42 cm2 module total area. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Triple‐junction solar cells from III–V compound semiconductors have thus far delivered the highest solar‐electric conversion efficiencies. Increasing the number of junctions generally offers the potential to reach even higher efficiencies, but material quality and the choice of bandgap energies turn out to be even more importance than the number of junctions. Several four‐junction solar cell architectures with optimum bandgap combination are found for lattice‐mismatched III–V semiconductors as high bandgap materials predominantly possess smaller lattice constant than low bandgap materials. Direct wafer bonding offers a new opportunity to combine such mismatched materials through a permanent, electrically conductive and optically transparent interface. In this work, a GaAs‐based top tandem solar cell structure was bonded to an InP‐based bottom tandem cell with a difference in lattice constant of 3.7%. The result is a GaInP/GaAs//GaInAsP/GaInAs four‐junction solar cell with a new record efficiency of 44.7% at 297‐times concentration of the AM1.5d (ASTM G173‐03) spectrum. This work demonstrates a successful pathway for reaching highest conversion efficiencies with III–V multi‐junction solar cells having four and in the future even more junctions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
III–V concentrator photovoltaic systems attain high efficiency through the use of series connected multi‐junction solar cells. As these solar cells absorb over distinct bands over the solar spectrum, they have a more complex response to real illumination conditions than conventional silicon solar cells. Estimates for annual energy yield made assuming fixed reference spectra can vary by up to 15% depending on the assumptions made. Using a detailed computer simulation, the behaviour of a 20‐cell InGaP/In0.01GaAs/Ge multi‐junction concentrator system was simulated in 5‐min intervals over an entire year, accounting for changes in direct normal irradiance, humidity, temperature and aerosol optical depth. The simulation was compared with concentrator system monitoring data taken over the same period and excellent agreement (within 2%) in the annual energy yield was obtained. Air mass, aerosol optical depth and precipitable water have been identified as atmospheric parameters with the largest impact on system efficiency. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Transparent silicon solar cells can lead to an increased efficiency of silicon‐based multi‐junction assemblies by transmitting near and below band gap energy light for conversion in a low band gap solar cell. This analysis shows that the maximum efficiency gain for a low band gap solar cell beneath silicon at a concentration of 50 suns is 5.8%, based on ideal absorption and conversion of the photons. This work analyzes the trade‐offs between increased near band edge absorption in the silicon and silicon solar cell transparency. Application of these results to real cases including a germanium bottom solar cell is analyzed, leading to a range of cases with increased system efficiency. Non‐ideal surfaces and real silicon and germanium solar cell device performance are presented. The range of practical system gains may be as low as 2.2 – 1% absolute when compared with the efficiency of a light‐trapped silicon solar cell for 1‐sun operation, based on this work. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Champion concentrator cell efficiencies have surpassed 40% and now many are asking whether the efficiencies will surpass 50%. Theoretical efficiencies of >60% are described for many approaches, but there is often confusion about “the” theoretical efficiency for a specific structure. The detailed balance approach to calculating theoretical efficiency gives an upper bound that can be independent of material parameters and device design. Other models predict efficiencies that are closer to those that have been achieved. Changing reference spectra and the choice of concentration further complicate comparison of theoretical efficiencies. This paper provides a side‐by‐side comparison of theoretical efficiencies of multi‐junction solar cells calculated with the detailed balance approach and a common one‐dimensional‐transport model for different spectral and irradiance conditions. Also, historical experimental champion efficiencies are compared with the theoretical efficiencies. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
The basis for the temperature dependence of the principal performance parameters of single and multi‐junction concentrator solar cells is examined, focusing on the impact of bandgap and irradiance. The analysis of cells in the radiative limit establishes fundamental bounds. A quasi‐empirical model yields predictions consistent with available data. A simple method for estimating the temperature coefficients of key performance parameters is identified. The degree to which the efficiency penalty associated with cell heating can be mitigated by high irradiance is also evaluated. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
The “SMAC module” is a low‐cost, high‐efficiency photovoltaic module that integrates three techniques: a “SM art stack,” “A real current matching,” and “solar C oncentration.” This paper presents the result of a proof‐of‐concept study of the SMAC module conducted using device simulations and indoor experiments. The simulation results show that an SMAC module with a two‐terminal GaAs/Si tandem solar cell can achieve an efficiency of approximately 30% and superior electricity generation per unit top cell area. The performance of the GaAs/Si solar cell developed in this study is similar to that of a GaAs/InGaAsP solar cell under concentrated artificial sunlight and is consistent with the simulation results. © 2016 The Authors. Progress in Photovoltaics: Research and Applications published by John Wiley & Sons Ltd.  相似文献   

9.
We present a geographical assessment of the performance of crystalline silicon photovoltaic (PV) modules over Europe. We have developed a method that is based on a material specific analytical expression of the PV conversion efficiency, relative to nominal efficiency, as a function of module temperature and irradiance. This method is combined with a climate database that includes average daytime temperature and irradiance profiles. It is found that the geographical variation in ambient temperature and yearly irradiation causes a decrease in overall yearly PV performance from 3 to 13% relative to the performance under Standard Test Conditions, with the highest decrease found in the Mediterranean region. Based on the above results we developed a simplified linear expression of the relative PV module efficiency that is a simple function of yearly total irradiation and yearly average daytime temperature. The coefficients to the linear expression are found by fitting to the map resulting from the above‐mentioned analytical approach. The prediction of total yearly PV output from this linear fit deviates less than 0·5% from the more detailed calculation, thus providing a faster and more simplified alternative to the yield estimate, in the case when only limited climate data are available. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
The status of the development of a new concentrator module in Japan is discussed based on three arguments, performance, reliability and cost. We have achieved a 26·6% peak uncorrected efficiency from a 7056 cm2 400 × module with 36 solar cells connected in series, measured in house. The peak uncorrected efficiencies of the same type of the module with 6 solar cells connected in series and 1176 cm2 area measured by Fraunhofer ISE and NREL are reported as 27·4% and 24·8% respectively. The peak uncorrected efficiency for a 550× and 5445 cm2 module with 20 solar cells connected in series was 28·9% in house. The temperature‐corrected efficiency of the 550 × module under optimal solar irradiation condition was 31·5 ± 1·7%. In terms of performance, the annual power generation is discussed based on a side‐by‐side evaluation against a 14% commercial multicrystalline silicon module. For reliability, some new degradation modes inherent to high concentration III‐V solar cell system are discussed and a 20‐year lifetime under concentrated flux exposure proven. The fail‐safe issues concerning the concentrated sunlight are also discussed. Moreover, the overall scenario for the reduction of material cost is discussed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
Herein, we present a prototype of a photovoltaic module that combines a luminescent solar concentrator integrating one‐dimensional photonic crystals and in‐plane CuInGaSe2 (CIGS) solar cells. Highly uniform and wide‐area nanostructured multilayers with photonic crystal properties were deposited by a cost‐efficient and scalable liquid processing amenable to large‐scale fabrication. Their role is to both maximize light absorption in the targeted spectral range, determined by the fluorophore employed, and minimize losses caused by emission at angles within the escape cone of the planar concentrator. From a structural perspective, the porous nature of the layers facilitates the integration with the thermoplastic polymers typically used to encapsulate and seal these modules. Judicious design of the module geometry, as well as of the optical properties of the dielectric mirrors employed, allows optimizing light guiding and hence photovoltaic performance while preserving a great deal of transparency. Optimized in‐plane designs like the one herein proposed are of relevance for building integrated photovoltaics, as ease of fabrication, long‐term stability and improved performance are simultaneously achieved. © 2015 The Authors. Progress in Photovoltaics: Research and Applications published by John Wiley & Sons Ltd.  相似文献   

12.
AlGaAs/GaAs heteroface solar cells with a high aluminium content tend to degrade. The degradation mechanism has been examined and appropriate accelerated ageing procedures have been established. They effectively test the ruggedness of the device against oxidation. Changing the window layer material to (AlxGa1−x)0.51In0.49P with x = 0, 0.5 or 1 leads to stable devices. In addition, III–V tandem solar cells for concentrator applications were subjected to accelerated ageing tests. They proved to be robust against oxidation. The potential degradation due to the high current density involved in concentrator solar cells was assessed in preliminary experiments. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
The irradiance and spectral distribution cast on the cell by a concentrating photovoltaic system, typically made up of a primary Fresnel lens and a secondary stage optical element, is dependent on many factors, and these distributions in turn influence the electrical performance of the cell. In this paper, the effect of spatial and spectral non‐uniform irradiance distribution on multi‐junction solar cell performance was analyzed using an integrated approach. Irradiance and spectral distributions were obtained by means of ray‐tracing simulation and by direct imaging at a range of cell‐to‐lens distances. At the same positions, I–V curves were measured and compared in order to evaluate non‐uniformity effects on cell performance. The procedure was applied to three different optical systems comprised a Fresnel lens with a secondary optical element consisting of either a pyramid, a dome, or a bare cell. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Measurements of the dislocation density are compared with locally resolved measurements of carrier lifetime for p‐type multicrystalline silicon. A correlation between dislocation density and carrier recombination was found: high carrier lifetimes (>100 µs) were only measured in areas with low dislocation density (<105 cm−2), in areas of high dislocation density (>106 cm−2) relatively low lifetimes (<20 µs) were observed. In order to remove mobile impurities from the silicon, a phosphorus diffusion gettering process was applied. An increase of the carrier lifetime by about a factor of three was observed in lowly dislocated regions whereas in highly dislocated areas no gettering efficiency was observed. To test the effectiveness of the gettering in a solar cell manufacturing process, five different multicrystalline silicon materials from four manufacturers were phosphorus gettered. Base resistivity varied between 0·5 and 5 Ω cm for the boron‐ and gallium‐doped p‐type wafers which were used in this study. The high‐efficiency solar cell structure, which has led to the highest conversion efficiencies of multicrystalline silicon solar cells to date, was used to fabricate numerous solar cells with aperture areas of 1 and 4 cm2. Efficiencies in the 20% range were achieved for all materials with an average value of 18%. Best efficiencies for 1 cm2 (20·3%) and 4 cm2 (19·8%) cells were achieved on 0·6 and 1·5 Ω cm, respectively. This proves that multicrystalline silicon of very different material specification can yield very high efficiencies if an appropriate cell process is applied. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
This paper proposes an indoor procedure based on charge‐coupled device camera measurements to characterize the non‐uniform light patterns produced by optical systems used in concentration photovoltaic (CPV) systems. These irradiance patterns are reproduced on CPV solar cells for their characterization at concentrated irradiances by using a concentrator cell tester and placing high‐resolution masks over the cells. Measured losses based on the masks method are compared with losses in concentrator optical systems measured by using the Helios 3198 solar simulator for CPV modules. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
The paper presents a quantitative approach to the investigation and comparison of the material qualities of III–V on silicon (III–V/Si) solar cells by using external radiative efficiencies. We use this analysis to predict the limiting efficiencies and evaluate the criteria of material quality in order to achieve high‐efficiency III–V/Si solar cells. This result yields several implications for the design of high‐efficiency III–V/Si solar cells. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
The building‐integrated photovoltaic (PV) technology is one of the most promising applications for amorphous silicon (a‐Si) thin film solar cells. It is necessary to develop more various building‐integrated PV modules, which will provide architects and industries more options for the PV installation to their buildings or construction bodies. In this paper, a new type of a‐Si PV module, called image‐patterned translucent a‐Si PV module, is developed. Any required image can be displayed on the module by using laser processes. In the present result, a 5.5 generation (1100 × 1400 mm) image‐patterned translucent PV module with 10% transmittance exhibits the stabilized maximum power output (Pmax) of 92.5 W, which can be further improved by optimizing the laser parameters. The remarkable features of our module such as the image displaying, natural light transmission, and heat reduction create entirely new applications including windows and logos and provide an option that adds personal style and unique design to the building interiors. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
We obtained 17.9% cell efficiency on thin and large mc‐Si REC wafers using ECN's metal‐wrap‐through (MWT) concept. Optimization of several cell processing steps led to an increase of more than 2% absolute in cell efficiency. With these cells 36‐cell modules were manufactured at 100% yield in our industry scale module pilot line. The highest module efficiency obtained (as independently confirmed by JRC‐ESTI) was 17%. In this module the average cell efficiency was 17.8%; this shows a small difference between cell and module efficiency. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
梯度掺杂对太阳能电池转换效率的影响   总被引:2,自引:0,他引:2  
论述了梯度掺杂对太阳能电池光伏转换效率的影响。利用掺杂半导体导带中自由电子数目及静电场理论,计算出了单晶硅指数掺杂的电场,并给出了任意梯度掺杂电场强度所满足的微分方程。  相似文献   

20.
Silicon represents an interesting material to fabricate low‐cost and relatively simple and high‐efficient solar cells in the low and medium concentration range. In this paper, we discuss a novel cell scheme conceived for concentrating photovoltaic, named emitter wrap through with deep grooved base (EWT‐DGB), and compare it with the simpler passivated emitter solar cell. Both cells have been fabricated by means of a complementary metal–oxide–semiconductor‐compatible process in our laboratory. The experimental characterization of both cells is reported in the range 1–200 suns in terms of conversion efficiency, open circuit voltage, short circuit current density and fill factor. In particular, for the EWT‐DGB solar cells, we obtain an encouraging 21.4% maximum conversion efficiency at 44 suns. By using a calibrated finite‐element numerical electro‐optical simulation tool, validated by a comparison with experimental data, we study the potentials of the two architectures for concentrated light conditions considering possible realistic improvements with respect to the fabricated devices. We compare the solar cell figures of merit with those of the state‐of‐the‐art silicon back‐contact back‐junction solar cell holding the conversion efficiency record for concentrator photovoltaic silicon. Simulation results predict a 24.8% efficiency at 50 suns for the EWT‐DGB cell and up to 23.9% at 100 suns for the passivated emitter solar cell, thus confirming the good potential of the proposed architectures for low to medium light concentration. Finally, simulations are exploited to provide additional analysis of the EWT‐DGB scheme under concentrated light. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号