首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Polyamide 6/polypropylene (PA6/PP = 70/30 parts) blends containing 4 phr (parts per hundred resin) of organophilic montmorillonite (OMMT) were prepared by melt compounding. The sodium montmorillonite (Na‐MMT) was modified using three different types of alkyl ammonium salts, namely dodecylamine, 12‐aminolauric acid, and stearylamine. The effect of clay modification on the morphological and mechanical properties of PA6/PP nanocomposites was investigated using x‐ray diffraction (XRD), transmission electron microscopy (TEM), tensile, flexural, and impact tests. The thermal properties of PA6/PP nanocomposites were characterized using thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), and heat distortion temperature (HDT). XRD and TEM results indicated the formation of exfoliated structure for the PA6/PP nanocomposites prepared using stearylamine modified montmorillonite. On the other hand, a mixture of intercalated and exfoliated structures was found for the PA6/PP nanocomposites prepared using 12‐aminolauric acid and dodecylamine modified montmorillonite. Incorporation of OMMT increased the stiffness but decreased the ductility and toughness of PA6/PP blend. The PA6/PP nanocomposite containing stearylamine modified montmorillonite showed the highest tensile, flexural, and thermal properties among all nanocomposites. This could be attributed to better exfoliated structure in the PA6/PP nanocomposite containing stearylamine modified montmorillonite. The storage modulus and HDT of PA6/PP blend were increased significantly with the incorporation of both Na‐MMT and OMMT. The highest value in both storage modulus and HDT was found in the PA6/PP nanocomposite containing stearylamine modified montmorillonite due to its better exfoliated structure. POLYM. COMPOS., 31:1156–1167, 2010. © 2009 Society of Plastics Engineers  相似文献   

2.
New type of nanocomposites containing various proportions of montmorillonite in aromatic polyamide was prepared via solution intercalation method. Aramid chains were synthesized by reacting 4,4′‐oxydianiline with isophthaloyl chloride in N,N′‐dimethyl acetamide. Dodecylamine was used as swelling agent to change the hydrophilic nature of montmorillonite into organophilic. Appropriate amounts of organoclay were mixed in the polymer solution using high‐speed mixer for complete dispersion of the clay. Thin films cast from these materials after evaporating the solvent were characterized by XRD, TEM, mechanical, thermal, and water absorption measurements. The structure and morphology of the nanocomposites determined by XRD and TEM revealed the formation of exfoliated and intercalated clay platelets in the aramid matrix. Mechanical data indicated improvement in the tensile strength and modulus of the nanocomposites with clay loading up to 6 wt%. The glass transition temperature increased up to 12 wt% clay content and thermal stability amplified with increasing clay loading. The water absorption reduced gradually as a function of organoclay and approached to zero with 20 wt% organoclay in the aramid. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

3.
From in situ polycondensation, a poly(ethylene terephthalate)/Polyamide 6 copolymer/montmorillonite nanocomposite was prepared, after the treatment of montmorillonite (MMT) with a water soluble polymer. The resulting nanocomposites were characterized by X‐ray diffraction (XRD), differential scanning calorimeter (DSC), nuclear magnetic resonance (NMR), dynamic mechanical analysis (DMA), and transmission electron microscopy (TEM). The results of DSC, 1H NMR, and DMA proved that the nanocomposite synthesized was PET/PA6 copolymer/MMT nanocomposite, not the PET/PA6 blend/MMT nanocomposite. The results of XRD and TEM proved that the dispersion of MMT was improved observably after the introduction of PA6 molecular chain into PET. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2512–2517, 2006  相似文献   

4.
A library of short di‐, tri‐, and tetra‐peptides with an s‐triazine moiety at the N terminus and either an amide or ethyl ester C terminus was prepared in solution and on the solid phase. The two remaining positions of the s‐triazine moiety were substituted with methoxy, morpholino, or piperidino groups. All the synthesized peptide derivatives were analyzed by HPLC and fully characterized by IR spectroscopy, 1H and 13C NMR spectroscopy, elemental analysis, and mass spectrometry (MALDI TOF/TOF). A preliminary study of the antileishmanial activity of the 1,3,5‐triazinyl peptide derivatives revealed that four dipeptide amide derivatives showed higher antipromastigote or antiamastigote activity than the reference standard drug miltefosine with no significance acute toxicity.  相似文献   

5.
The effects of multiwalled carbon nanotubes (MWCNTs) on the thermal properties and flame retardancy of a new polyamide (PA) derived from glutaric acid and aromatic diamine were investigated in this work. The synthesized PA containing pyridine and trialkylamine groups was characterized by 1H NMR and SEC. The PA unit structure was geometrically optimized at the B3LYP/6‐311++G(d, p) level of theory. PA showed a glass transition temperature of 151 ºC. PA nanocomposites containing two different amounts of MWCNTs were prepared via the solution intercalation technique with the solvent N,N‐dimethylacetamide. Transmission electron microscopy showed that MWCNTs were exfoliated in the polymer matrix, resulting in well‐dispersed morphologies at 3 wt% MWCNT content. The redox behaviors of PA and the nanocomposites were examined using cyclic voltammetry (CV). PA showed a reversible oxidation process in the CV scan. Thermal and flammability properties of the nanocomposites were studied by TGA in nitrogen and air, DSC and with a microscale combustion calorimeter. The TGA results showed that the addition of MWCNTs resulted in a substantial increase in the thermal stability and char yields of the nanocomposites compared with neat PA. The heat release rate and total heat release were significantly reduced in the presence of MWCNTs. © 2013 Society of Chemical Industry  相似文献   

6.
2,4,8,10-Tetraoxa-3,9-diphosphaspiro[5.5]-undecane-3,9-dioxide-disubstitutio-acetamide-N,N-dimethyl-N-hexadecy-ammonium bromide (PDHAB) containing phosphorus–nitrogen structure was synthesized and characterized. A novel flame retardant, montmorillonite (Mt) modified by PDHAB (PDHAB-Mt), was prepared by ion-exchange of sodium montmorillonite (Na+-Mt) with PDHAB. The results of X-ray diffraction (XRD) indicated that PDHAB had intercalated with Na+-Mt and exfoliated LDPE/EVA/20% PDHAB-Mt nanocomposites had been obtained by polymer melt intercalation which was further supported by TEM. The flammability of LDPE/EVA/PDHAB-Mt nanocomposites was investigated by the cone calorimeter test. The results showed that the addition of flame retardant PDHAB-Mt enhanced the flame retardancy of LDPE/EVA blend significantly. The results of SEM and TEM indicated that PDHAB-Mt can achieve better dispersion in the chars after combustion and the intumescent char is formed for LDPE/EVA/PDHAB-Mt nanocomposites after combustion. It is found that the char structure plays an important role for PDHAB-Mt in LDPE/EVA blend. The flame retardancy of LDPE/EVA blend was also significantly improved by an addition of PDHAB-Mt in LDPE/EVA blend.  相似文献   

7.
Vanillin (4‐hydroxy‐3‐methoxy benzaldehyde) and 5‐formylamino salicylic acid microbicides were reacted with polyoxyalkylene‐montmorillonite (D230–2000‐MMT) nanocomposites. The microstructure of these Schiff base nanocomposites was characterized by TEM and XRD. D230–2000‐MMT nanocomposites were prepared by an ion exchange process of sodium montmorillonite (Na‐MMT) and NH3 + groups in polyoxyalkylene amine hydrochloride with three different molecular masses of D230, D400, and D2000. Wide‐angle X‐ray diffraction confirms the intercalation of the polymer between the silicate layers. Electrostatic interaction between the positively charged NH3 + groups and the negatively charged surface of MMT was observed. The nanocomposites were tested for antimicrobial activity against the Gram‐negative bacteria (Escherichia coli NCIM 2065), Gram‐positive bacteria (Bacillus subtillus ATCC), and fungi (Candida albicans SC5314 and Cryptococcus neoformans). The D2000‐MMT/vanillin Schiff base nanocomposite strongly inhibited the growth of all microorganisms that can be used in different applications. The amount of loaded polymer and the structure of the nanocomposite play an important role in inhibiting the bacterial and fungal strains. It is found that the Schiff base nanocomposite affect the morphology, oxygen consumption, and the release of cytoplasmic constituents such as potassium (K+), sodium (Na+), and calcium (Ca2+) ions leading to death of the cells. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

8.
In this article, polyamide 6 (PA6)/clay nanocomposites, PA6/polyethylene grafted maleic anhydride (PE‐g‐MA) blends, and PA6/PE‐g‐MA/clay nanocomposites were prepared and their gasoline permeation behavior and some mechanical properties were investigated. In PA6/clay nanocomposites, cloisite 30B was used as nanoparticles, with weight percentages of 1, 3, and 5. The blends of PA6/PE‐g‐MA were prepared with PE‐g‐MA weight percents of 10, 20, and 30. All samples were prepared via melt mixing technique using a twin screw extruder. The results showed that the lowest gasoline permeation occurred when using 3 wt % of nanoclay in PA6/clay nanocomposites, and 10 wt % of PE‐g‐MA in PA6/PE‐g‐MA blends. Therefore, a sample of PA6/PE‐g‐MA/clay nanocomposite containing 3 wt % of nanoclay and 10 wt % of PE‐g‐MA was prepared and its gasoline permeation behavior was investigated. The results showed that the permeation amount of PA6/PE‐g‐MA/nanoclay was 0.41 g m?2 day?1, while this value was 0.46 g m?2 day?1 for both of PA6/3wt % clay nanocomposite and PA6/10 wt % PE‐g‐MA blend. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40150.  相似文献   

9.
In the present study, new functional poly(amide‐imide)/organoclay nanocomposite films were successfully fabricated through the solution intercalation technique. New poly(amide‐imide) (PAI) containing glycine was synthesized via solution polycondensation of 1,1',3,3'‐tetraoxo(5,5'‐biisoindoline‐2,2'‐diyl)diacetic acid with 4,4′‐diaminodiphenylsulfone. The synthesized PAI was characterized by 1H NMR, Fourier transform infrared (FTIR) spectroscopy, gel permeation chromatography, elemental analysis and inherent viscosity. Then, PAI/organoclay nanocomposite films containing 4 and 8 wt% of organoclay were prepared via solution intercalation through blending of organoclay 30B with the PAI solution. The nanostructures and properties of the PAI/organoclay were investigated using FTIR spectroscopy, XRD, transmission electron microscopy (TEM), TGA, DSC and microscale combustion calorimetry. XRD and TEM revealed the good dispersion of organoclay in the polymer matrix. TGA indicated that the addition of organoclay into the PAI matrix increases the thermal decomposition temperatures and char yields of the nanocomposites. Organoclay shows a positive effect in improving the flame retardancy of the PAI, reflecting the decrease in heat release rate, the total heat release and the heat release capacity of the PAI nanocomposites, while the thermal stability of the PAI nanocomposites only increased slightly compared with the neat polymer. © 2013 Society of Chemical Industry  相似文献   

10.
Butadiene‐isoprene copolymer/montmorillonite (BIR/MMT) nanocomposites were synthesized successfully via in situ anionic polymerization. The results of transmission electron microscopy and X‐ray diffractometer showed that the clay layers were exfoliated and high reaction temperature benefited the exfoliation of layers in BIR/MMT. The polymerization still exhibited “living” characteristics with the addition of organophilic montmorillonite (OMMT). However, the contents of 1,2‐polybutadiene and 3,4‐polyisoprene of the copolymer decreased with the addition of OMMT, because of its absorption effect on N,N,N′,N′‐tetramethylethanediamine as revealed by 1H NMR. Moreover, it was observed that the glass‐transition temperature of the BIR/MMT nanocomposites also decreased when compared with the BIR copolymers. The thermal stability of the nanocomposites was improved, because of the barrier property of exfoliated clay layers. © 2006 Wiley Periodicals, Inc. J Appl PolymSci 102: 1167–1172, 2006  相似文献   

11.
A novel flame retardant heax‐[N,N′,N″‐tris‐(2‐amino‐ethyl)‐[1,3,5] triazine‐2,4,6‐triamine] cyclotriphosphazene (HTTCP) containing phosphazene and triazine groups was synthesized and characterized by Fourier transform infrared spectroscopy (FTIR), solid‐state 1H and 13C nuclear magnetic resonance (NMR) spectroscopy. HTTCP was applied to PLA matrix. The results of thermal gravimetric analysis (TGA), the limited oxygen index (LOI), and cone calorimeter test indicated that the HTTCP enhanced the thermal stability and flame retardant properties of PLA. When the mass fraction of HTTCP was 25 wt %, the PLA composite acquired a LOI value of 25.2% and the lower pk‐HRR at 290 kW/m2. The excellent flame retardancy of HTTCP was attributed to the group synergistic effect between phosphazene and triazine groups. However, when combined HTTCP with APP (the total amount remaining 25 wt %, the ratio of HTTP to APP are 1:1 and 1:2), high values of LOI (over 40%) and UL94 V‐0 rating without dripping reached simultaneously. Meanwhile, the heat release rate, total heat release and mass loss rate were all decreased dramatically. Scanning electron microscopy (SEM) demonstrated that HTTCP/APP system benefited to the formation of more intumescent, dense, compact char layer on the materials surface which could effectively prevent the underlying material from degradation during burning. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44660.  相似文献   

12.
Electropolymerization nanofilm was prepared by cyclic voltammogram with 6N,N‐diallylamino‐1,3,5‐triazine‐2,4‐dithiol monosodium (DAN) on the AA5052 surface in 0.15M NaNO2 at 10°C, then octyl‐triethoxysilane (OTES) film was fabricated on the poly(6N,N‐diallylamino‐1,3,5‐triazine‐2,4‐dithiol) nanofilm (PDA) covered AA5052 surface by self‐assembling method to obtain the composite polymeric nanofilm (C‐PDA/OTES). The composite polymeric nanofilm was characterized by means of FTIR spectra, scanning electron microscope (SEM), contact angle, and potentiodynamic polarization. The results showed that the C‐PDA/OTES covered surface was more homogenous, compact, hydrophobic compared with PDA covered surface and had excellent protection efficiency. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

13.
A novel oligosiloxane containing alternative ladderlike structure involving viologen groups has been prepared via donor–acceptor interaction‐assisted template polymerization. The monomer used as the electron‐donor component, N,N ′‐bis(3‐methyldimethoxyl‐silylpropyl)‐4,4′‐bipyridinium dihexafluorophosphate and its precursor, N,N ′‐bis(3‐methyldimethoxyl‐silylpropyl)‐4,4′‐bipyridinium dibromide were first synthesized successfully in high yield. This oligosiloxane, which displays interesting electrochromic properties, has been characterized by FTIR, UV–vis, 1H NMR, 29Si NMR, X‐ray diffraction (XRD), and vapour pressure osmometry (VPO). © 2001 Society of Chemical Industry  相似文献   

14.
BACKGROUND: The development of polymeric nanocomposites incorporating intercalated or exfoliated layered silicate clays into the organic matrix has been substantially motivated by the significant improvements induced by the presence of the inorganic component. Moreover, understanding and controlling the dispersion of inorganic layers into segmented polyurethane matrices by means of ionic interactions, and exploiting these interactions to enhance physicomechanical behaviour, could be of great interest in the field of polymer nanocomposites. RESULTS: New cationic polyurethane elastomers were prepared starting from poly(butylene adipate)diol (Mn = 1000 g mol?1), 4,4′‐diphenylmethane diisocyanate, 1,4‐butanediol and N‐methyldiethanolamine or N,N′‐β‐hydroxyethylpiperazine, used as potential quaternizable moieties. The characterization of the polymers was achieved using specific analyses employed for the macromolecular samples (Fourier transform infrared and 1H NMR spectroscopy, thermogravimetric analysis (TGA), gel permeation chromatography). An extension of our research on polymers reinforced with organically modified montmorillonite (OM‐MMT) in order to prepare hybrid composites with improved properties was performed and the resulting materials were characterized using TGA, X‐ray diffraction, atomic force microscopy and scanning electron microscopy. Also, the mechanical properties of the cationic polyurethane/OM‐MMT composites were investigated in comparison with the pristine ionic/non‐ionic polymers and their composites containing non‐ionic polymer blended with OM‐MMT or ionic polymer and unmodified MMT. CONCLUSION: The insertion of the organically modified clay into the polymeric matrix gave an improvement of the mechanical properties of the polyurethane composites, especially the tensile strength and stiffness of the hybrid materials. Copyright © 2009 Society of Chemical Industry  相似文献   

15.
In this work, the silylation of sodium montmorillonite (Na+-Mt, Nanofil 757®) was performed using (3-aminopropyl)triethoxy silane (APTES). Different reaction conditions were used varying the reaction time and the amount of the aminosilane. Epoxy-based nanocomposites were prepared with different amounts of silylated Mt or commercial organically modified Mt intercalated with stearylbenzyldimethyl ammonium chloride (Nanofil 2®) and distearyldimethyl ammonium chloride (Nanofil 8®), respectively. The grafting/intercalation of the aminosilane inside the Mt interlayer spaces was studied by means of Fourier transform infrared (FTIR), X-ray diffraction (XRD), nuclear magnetic resonance (NMR) and thermogravimetric analysis (TGA). After isothermal curing at 90 °C the Mt epoxy nanocomposites were analyzed by means of XRD and dynamic mechanical analysis (DMA). The glass transition temperature of all prepared nanocomposites containing silylated Mt, is slightly higher than that of the neat epoxy (2 to 5 °C). In the presence of 1 to 5 m% of silylated Mt in epoxy matrix the storage modulus increases from about 5 to 15% at 25 °C, respectively, compared to the pristine epoxy matrix, while only 0–4% increase was observed for epoxy nanocomposites with commercial modified Mt.  相似文献   

16.
The bulk copolymerization of styrene–acrylonitrile monomers using styrene‐N+–montmorillonite complex as a comonomer in the polymerization was studied. The X‐ray diffraction (XRD) analysis showed that part of the styrene‐N+–montmorillonite complex remained non‐dispersed (immiscible) and the copolymer was excluded from the interlayer of the immiscible part of the clay. The successive chemical extraction process revealed that a reasonable amount of the styrene–acrylonitrile copolymer was directly attached to the styrene‐N+–montmorillonite complex and enveloped the clay. Highly exfoliated clay lamella and nanospheres (3–5 nm) were observed by transmission electron microscopy (TEM). The montmorillonite clay assume two different morphologies, immiscible and exfoliated, on the basis of the XRD and TEM data. A simple method of calculation of the ratio of the exfoliated/immiscible amounts of the clay indicated that the amount of the styrene‐N+–montmorillonite complex exfoliated into separate lamella was 40 % (w/w) of the amount of the clay samples containing 2 % of the (styrene‐N+–montmorillonite complex) clay. This amount of exfoliated clay decreases with the increase of the concentration of the clay. The presence of the styrene‐N+–montmorillonite clay in the copolymerization reaction had a minor effect on both the copolymer composition and the molecular weight. Modification of the clay with the derivatized styrene monomer can achieve a nanocomposite using a percentage no more than 4 % (w/w) of complex in the copolymer. Copyright © 2004 Society of Chemical Industry  相似文献   

17.
N,N‐Bis(2‐hydroxyethyl)formamide (BHF) was synthesized efficiently and used as a new additive to prepare thermoplastic starch/montmorillonite (TPS/MMT) nanocomposites. Here, BHF acted as both plasticizer for TPS and swelling agent for MMT. The hydrogen bond interaction among BHF, starch, and MMT was proven by Fourier transform infrared (FTIR) spectroscopy. By scanning electron microscope (SEM), starch granules were completely disrupted. Atomic force microscopy demonstrated that partially exfoliated TPS/MMT nanocomposites were formed. The crystallinity of corn starch, MMT, BHF‐plasticized TPS (BTPS), and TPS/MMT nanocomposites was characterized by X‐ray diffraction (XRD), XRD demonstrated that partially intercalated TPS/MMT nanocomposites were formed. The water resistance of TPS/MMT nanocomposites increased compared with that of pure BTPS. Mechanical properties of BTPS and TPS/MMT nanocomposites were examined. POLYM. COMPOS., 2012. © 2011 Society of Plastics Engineers  相似文献   

18.
Summary: Synthesis and properties of amine modifiers for unsaturated polyester resins are presented. The modifiers were obtained by reacting 3‐azapentan‐1,5‐diol (diethanoloamine) with 2,4‐dichloro‐6‐methoxy‐1,3,5‐triazine, 2‐chloro‐4,6‐dimethoxy‐1,3,5‐triazine or with cyanuric chloride. They were incorporated into the structure of typical unsaturated polyester resins in the polycondensation stage, i.e. prior to dilution with styrene, in the amount of 0.25 through to 2.0 wt.‐%. The effect of the modifier presence on the curing behavior of the resulting resins is discussed.

Gelation times for unsaturated polyester resins modified with modifiers A , B , and C are shown with the curing system consisting of peroxide initiator and (?): 0.10 cm3, (?): 0.15 cm3, (?): 0.25 cm3, and (?): 0.50 cm3 of cobalt(II ) octenate solution per 25 g of resin.  相似文献   


19.
In this study, a nanocomposite based on a biodegradable polymer poly(hydroxybutyrate‐co‐hydroxyvalerate) (PHBV) reinforced by triethylene glycol mono‐n‐decyl ether (C10E3) non‐ionic organoclay (C10E3‐Mt) was prepared. The morphology and the thermal and mechanical properties of PHBV/C10E3‐Mt were compared with those of PHBV nanocomposites prepared using commercial organically modified montmorillonite Cloisite® 30B (OMt) and raw montmorillonite (Mt). Nanocomposites with 3 wt% nanoparticles were obtained by melt processing. The high level of dispersion with improved interfacial interactions between OMt and polymer led to an increase in the thermal stability and modulus of PHBV. However, this nanocomposite presented a lower strain before fracture, typical of brittle behavior. The transmission electron microscopy and wide angle X‐ray diffraction results revealed a significant increase in the interlayer spacing of clay for the PHBV/C10E3‐Mt nanocomposite, which was favored by the wide expansion of the platelets of the starting non‐ionic organoclay. This characteristic of C10E3‐Mt, together with its hydrophobic behavior, allowed its easy incorporation in the PHBV matrix, thus improving the processing and maintaining a high modulus with increased material toughness. © 2014 Society of Chemical Industry  相似文献   

20.
The investigation of clay based polymer nanocomposites has opened the door for the development of novel, ecofriendly advanced nano materials that can be safely recycled. Because of their nanometer size dispersion, these nanocomposites often have superior physical and mechanical properties. In this study, novel nanocomposites of poly(o‐toluidine) (POT) and organically modified montmorillonite (MMT) were synthesized using camphor sulfonic acid (CSA), cetyl pyridinum chloride (CPCl), and N‐cetyl‐N,N,N‐trimethyl ammonium bromide (CTAB) to study the role of surfactant modification on the intercalation. The in situ intercalative polymerization of POT within the organically modified MMT layers was analyzed by FTIR, UV–visible, XRD, SEM as well as TEM studies. The average particle size of the nanocomposites was found to be in the range 80–100 nm. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号