首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An effective approach to prepare polyimide/siloxane‐functionalized graphene oxide composite films is reported. The siloxane‐functionalized graphene oxide was obtained by treating graphene oxide (GO) with 1,3‐bis(3‐aminopropyl)‐1,1,3,3‐tetra‐methyldisiloxane (DSX) to obtain DSX‐GO nanosheets, which provided a starting platform for in situ fabrication of the composites by grafting polyimide (PI) chains at the reactive sites of functional DSX‐GO nanosheets. DSX‐GO bonded with the PI matrix through amide linkage to form PI‐DSX‐GO films, in which DSX‐GO exhibited excellent dispersibility and compatibility. It is demonstrated that the obvious reinforcing effect of GO to PI in mechanical properties and thermal stability for PI‐DSX‐GO is obtained. The tensile strength of a composite film containing 1.0 wt% DSX‐GO was 2.8 times greater than that of neat PI films, and Young's modulus was 6.3 times than that of neat PI films. Furthermore, the decomposition temperature of the composite for 5% weight loss was approximately 30 °C higher than that of neat PI films. © 2015 Society of Chemical Industry  相似文献   

2.
In this study, we report an effective method to fabricate high‐performance polyimide (PI)‐based nanocomposites using 3‐aminopropyltriethoxysilane functionalized graphene oxide (APTSi‐GO) as the reinforcing filler. APTSi‐GO nanosheets exhibit good dispersibility and compatibility with the polymer matrix because of the strong interfacial covalent interactions. PI‐based nanocomposites with different loadings of functionalized graphene nanosheets (FGNS) were prepared by in situ polymerization and thermal imidization. The mechanical performance, thermal stability, and electrical conductivity of the FGNS/PI nanocomposites are significantly improved compared with those of pure PI by adding only a small amount of FGNS. For example, a 79% improvement in the tensile strength and a 132% increase in the tensile modulus are achieved by adding 1.5 wt % FGNS. The electrical and thermal conductivities of 1.5 wt % FGNS/PI are 2.6 × 10?3 S/m and 0.321 W/m·K, respectively, which are ~1010 and two times higher than those of pure PI. Furthermore, the incorporation of graphene significantly improves the glass‐transition temperature and thermal stability. The success of this approach provides a good rationale for developing multifunctional and high‐performance PI‐based composite materials. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42724.  相似文献   

3.
We report, the preparation of nanocomposites having polyimide (PI) as matrix and graphene oxide (GO) as filler, analyses of matrix–filler interactions, and enhancements in thermomechanical properties of PI/GO as compared with pristine PI. The matrix–filler interactions were analyzed by 1H NMR, X‐ray photoelectron spectroscopy, and density functional theory calculations. The data suggested stronger matrix–filler interactions in PI/GO as compared with PI/G composites. The stronger matrix–filler interactions and homogeneous dispersion of fillers lead to a significant enhancement in mechanical properties in PI/GO nanocomposites. Thus, with just 1 wt% GO content, the modulus of PI/GO composite increased by ~106% as compared with pristine PI. Finally, thermal expansion coefficients of the nanocomposites are also investigated. A plausible hypothesis has been proposed in the text to explain the observed matrix–filler interactions and the subsequent property enhancements in nanocomposites. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

4.
Polyimide (PI) nanocomposites with both enhanced thermal conductivity and dimensional stability were achieved by incorporating glycidyl methacrylate‐grafted graphene oxide (g‐GO) in the PI matrix. The PI/g‐GO nanocomposites exhibited linear enhancement in thermal conductivity when the amount of incorporated g‐GO was less than 10 wt%. With the addition of 10 wt% of g‐GO to PI (PI/g‐GO‐10), the thermal conductivity increased to 0.81 W m?1 K?1 compared to 0.13 W m?1 K?1 for pure PI. Moreover, the PI/g‐GO‐10 composite exhibited a low coefficient of thermal expansion (CTE) of 29 ppm °C?1. The values of CTE and thermal conductivity continuously decreased and increased, respectively, as the g‐GO content increased to 20 wt%. Combined with excellent thermal stability and high mechanical strength, the highly thermally conducting PI/g‐GO‐10 nanocomposite is a potential substrate material for modern flexible printed circuits requiring efficient heat transfer capability.  相似文献   

5.
To improve the physical and gas barrier properties of biodegradable poly(lactic acid) (PLA) film, two graphene nanosheets of highly functionalized graphene oxide (0.3 wt% to 0.7 wt%) and low-functionalized graphene oxide (0.5 wt%) were incorporated into PLA resin via solution blending method. Subsequently, we investigated the effects of material parameters such as loading level and degree of functionalization for the graphene nanosheets on the morphology and properties of the resultant nanocomposites. The highly functionalized graphene oxide (GO) caused more exfoliation and homogeneous dispersion in PLA matrix as well as more sustainable suspensions in THF, compared to low-functionalized graphene oxide (LFGO). When loaded with GO from 0.3 wt% to 0.7 wt%, the glass transition temperature, degree of crystallinity, tensile strength and modulus increased steadily. The GO gave rise to more pronounced effect in the thermal and mechanical reinforcement, relative to LFGO. In addition, the preparation of fairly transparent PLA-based nanocomposite film with noticeably improved barrier performance achieved only when incorporated with GO up to 0.7wt%. As a result, GO may be more compatible with hydrophilic PLA resin, compared to LFGO, resulting in more prominent enhancement of nanocomposites properties.  相似文献   

6.
Polyimide (PI) nanocomposites with 4,4′‐bisphenol A dianhydride, 4,4′‐oxydiphthalic anhydride, and diaminodiphenyl methane (MDA) as comonomers and functionalized with graphene oxide (GO), were prepared by in situ polymerization. Only a small amount of GO (0.03–0.12 wt %) is added to improve the mechanical properties of PI and to avoid a substantial decrease of PI transparence. The nanocomposites are characterized by FTIR, X‐ray diffraction, thermogravimetric analysis, transmission electron microscope, tensile test, and UV‐vis spectroscopy. It is demonstrated that the PI/GO composite films possess transmittance of above 80% at wavelengths of 500–800 nm when the GO content is under 0.12 wt %, while the stress intensity and Young's modulus are improved by 29 and 25%, respectively. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
Graphene oxide (GO), as an important precursor of graphene, was functionalized using alkyl‐amines with different structure and then reduced to prepare reduced amines grafted graphene oxide (RAGOs) by N2H4 · H2O. The successful chemical amidation reaction between amine groups of alkyl‐amines and carboxyl groups of GO was confirmed by Fourier transform infrared (FTIR), X‐ray photoelectron spectroscopy (XPS), and thermal gravimetric analysis (TGA). Then RAGOs/polyimide nanocomposites were prepared via in situ polymerization and thermal curing process with different loadings of RAGOs. The modification of amine chains lead to homogenous dispersion of RAGOs in the composites and it formed strong interfacial adhesion between RAGOs and the polymer matrix. The mechanical and electrical properties of polyimide (PI) were significantly improved by incorporation of a small amount of RAGOs, the influence of structure of amines grafted on RAGOs on the enhancement effects of composites was discussed. The research results indicated that the proper structure of amine could effectively enhance the properties of composites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43820.  相似文献   

8.
Homogeneous dispersion and strong filler–matrix interfacial interactions were vital factors for graphene for enhancing the properties of polymer composites. To improve the dispersion of graphene in the polymer matrix and enhance the interfacial interactions, graphene oxide (GO), as an important precursor of graphene, was functionalized with amine‐terminated poly(ethylene glycol) (PEG–NH2) to prepare GO–poly(ethylene glycol) (PEG). Then, GO–PEG was further reduced to prepare modified reduced graphene oxide (rGO)–PEG with N2H4·H2O. The success of the modification was confirmed by Fourier transform infrared spectroscopy, thermogravimetric analysis, and Raman spectroscopy. Different loadings of rGO–PEG were introduced into polyimide (PI) to produce composites via in situ polymerization and a thermal reduction process. The modification of PEG–NH2 on the surface of rGO inhibited its reaggregation and improved the filler–matrix interfacial interactions. The properties of the composites were enhanced by the incorporation of rGO–PEG. With the addition of 1.0 wt % rGO–PEG, the tensile strength of PI increased by 81.5%, and the electrical conductivity increased by eight orders of magnitude. This significant improvement was attributed to the homogeneous dispersion of rGO–PEG and its strong filler–matrix interfacial interactions. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45119.  相似文献   

9.
Dodecyl amine (DA) functionalized graphene oxide(DA‐GO) and dodecyl amine functionalized reduced graphene oxide (DA‐RGO) were produced by using amidation reaction and chemical reduction, then two kinds of well dispersed DA‐GO/high‐density polyethylene (HDPE) and DA‐RGO/HDPE nanocomposites were prepared by solution mixing method and hot‐pressing process. Thermogravimetric, X‐ray photoelectron spectroscopy, Fourier transforms infrared spectroscopy, X‐ray diffractions, and Raman spectroscopy analyses showed that DA was successfully grafted onto the graphene oxide surface by uncleophilic substitution and the amidation reaction, which increased the intragallery spacing of graphite oxide, resulting in the uniform dispersion of DA‐GO and DA‐RGO in the nonpolar xylene solvent. Morphological analysis of nanocomposites showed that both DA‐GO and DA‐RGO were homogeneously dispersed in HDPE matrix and formed strong interfacial interaction. Although the crystallinity, dynamic mechanical, gas barrier, and thermal stability properties of HDPE were significantly improved by addition of small amount of DA‐GO or DA‐RGO, the performance comparison of DA‐GO/HDPE and DA‐RGO/HDPE nanocomposites indicated that the reduction of DA‐GO was not necessary because the interfacial adhesion and aspect ratio of graphene sheets had hardly changed after reduction, which resulting in almost the same properties between DA‐GO/HDPE and DA‐RGO/HDPE nanocomposites. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39803.  相似文献   

10.
In this study, glass fiber/epoxy composites were interfacially tailored by introducing polyamidoamine (PAM) dendrimer functionalized graphene oxide (GO) into epoxy matrix. Two different composites each containing varying loading fraction (0.5, 1.0, and 1.5 wt%) of GO and GO-PAM were fabricated via hot press processing. Composites were evaluated for interlaminar shear strength (ILSS), dynamic mechanical properties and thermal conductivity. The inclusion of 1.5 wt% GO-PAM resulted ~57.3%, ~42.7%, and ~54% enhancement in ILSS, storage modulus and thermal conductivity, respectively. Almost, ~71% reduction in coefficient of thermal expansion was also observed at same GO-PAM loading. Moreover, higher glass transition temperature was observed with GO-PAM addition. GO-PAM substantially improved fiber/matrix interfacial adhesion, which was witnessed through scanning electron microscopy. The enhanced thermo-mechanical performance was attributed to interfacial covalent interactions engendered by ring opening reaction between epoxy and amine moieties of PAM dendrimers. These multiscale composites with extraordinary functional properties can outperform conventional counterparts with improved reliability and performance.  相似文献   

11.
We report an in situ thermal reduction of graphene oxide (GO) in a styrene–ethylene/butylene–styrene (SEBS) triblock copolymer matrix during a melt‐blending process. A relatively high degree of reduction was achieved by melt‐blending premixed GO/SEBS nanocomposites in a Haake mixer for 25 min at 225 °C. Infrared spectral results revealed the successful thermal reduction of, and the strong adsorption of SEBS on, the graphene sheets. The glass transition temperature of polystyrene (PS) segments in SEBS was enhanced by the incorporation of thermally reduced graphene oxide (TRGO). The resultant TRGO/SEBS nanocomposites were used as a masterbatch to improve the mechanical properties of PS. Both the elongation at break and the flexural strength of PS/SEBS blends were enhanced with the addition of the TRGO. Our demonstration of the in situ thermal reduction of GO via melt blending is a simple, efficient strategy for preparing nanocomposites with well‐dispersed TRGO in the polymer matrix, which could be an important route for large‐scale fabrication of high‐performance graphene/polymer nanocomposites. © 2013 Society of Chemical Industry  相似文献   

12.
Highly oriented molecular structure is essential for high‐performance carbon fibers. The addition of a small amount of graphene sheets may enhance the degree of molecular orientation of precursor fibers during spinning and stabilization by limiting the disorientation of the chain segments. Graphene sheets merge into the carbon fiber structure during carbonization. The structure and properties of polyacrylonitrile containing graphene oxide (GO) prepared by in situ polymerization were investigated. With increasing GO loading, the molecular weight of the polymer decreased gradually from 69 000 g mol?1 for the sample without GO to 60 600 g mol?1 for the sample with 2.5 wt% loading of GO. Scanning electron microscopy and X‐ray diffraction results indicated that GO was dispersed in single layers in the polymer matrix. The degree of crystallization of the polymer with 0.5 wt% GO was increased by 8%. Moreover, differential scanning calorimetry and thermogravimetric analysis showed that an appropriate amount of GO, e.g. 0.5 wt%, made the carbon yield of the polymer increase by 5.0 wt%, because the GO in the composite improved the intermolecular crosslinking reaction. Copyright © 2012 Society of Chemical Industry  相似文献   

13.
《Polymer Composites》2017,38(10):2321-2331
In this article, reduced graphene oxide/polyimide resin composites which exhibited enhancements in mechanical properties were successfully fabricated by hot‐pressing, and reduced graphene oxide nanosheets were synthesized by thermal reduced method, which can readily mix with PI powders in aqueous solution by sonication process. The chemical structures of rGO were carefully characterized by X‐ray diffraction, Fourier transfer infrared spectroscopy and X‐ray photoelectron spectroscopy. The field emission scanning electron microscopy observations showed that the rGO displayed excellent dispersibility and compatibility with the PI matrix. The mechanical analysis indicated that the tensile and flexural strength values of the rGO/PI resin composite with 1.5 wt% rGO loading reached 80.7 and 133.3 MPa, respectively. Compared with pure PI, the optimized rGO/PI resin composite exhibited an enhancement of 30% in tensile strength, 19% in flexural strength and 27% in impact strength, due to the fine dispersion of high specific surface area of graphene nanosheets and the good adhesion between the rGO and the matrix. In addition, thermogravimetric analysis, dynamic mechanical analysis, and dielectric properties were also investigated. POLYM. COMPOS., 38:2321–2331, 2017. © 2015 Society of Plastics Engineers  相似文献   

14.
To improve the thermal and mechanical properties and further to expand its applications of epoxy in electronic packaging, reduced graphene oxide/epoxy composites have been successfully prepared, in which dopamine (DA) was used as reducing agent and modifier for graphene oxide (GO) to avoid the environmentally harmful reducing agents and address the problem of aggregation of graphene in composites. Further studies revealed that DA could effectively eliminate the labile oxygen functionality of GO and generate polydopamine functionalized graphene oxide (PDA‐GO) because DA would be oxidated and undergo the rearrangement and intermolecular cross‐linking reaction to produce polydopamine (PDA), which would improve the interfacial adhesion between GO and epoxy, and further be beneficial for the homogenous dispersion of GO in epoxy matrix. The effect of PDA‐GO on the thermal and mechanical properties of PDA‐GO/epoxy composites was also investigated, and the incorporation of PDA‐GO could increase the thermal conductivity, storage modulus, glass transition (Tg), and dielectric constant of epoxy. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39754.  相似文献   

15.
This study thoroughly studied the implements of fluorosilane modified graphene oxide (GO) on the mechanical, thermal, and water absorption properties of the epoxy composites built up by specific content of modified GO. Fluorosilane graphene oxide (GOSiF) was analyzed using Fourier transform infrared spectroscopy, thermogravimetric analysis, Raman spectroscopy, X‐ray photoelectron spectroscopy, and X‐ray diffractometer. The epoxy composites tensile and bending modulus were increased by 11.46% and 62.25% with 0.1 and 0.5 wt% GOSiF loading, respectively. The good interfacial interaction was observed between epoxy matrix and GOSiF nanosheets under scanning electron microscopy. The thermal stability increases with GOSiF loading. Epoxy composite with 0.3 wt% GOSiF shows 5 °C increases in the T10%. The residual weight raised by 58.67% with 0.3 wt% GOSiF content. The water absorption study revealed small water uptake was obtained for all GOSiF composites. With 0.3 wt% loading of GOSiF, the maximum water content drops from 4.97% for neat epoxy to 1.98%. POLYM. ENG. SCI., 59:1250–1257 2019. © 2019 Society of Plastics Engineers  相似文献   

16.
To improve the thermal and mechanical properties of liquid silicone rubber (LSR) for application, the graphene oxide (GO) was proposed to reinforce the LSR. The GO was functionalized with triethoxyvinylsilane (TEVS) by dehydration reaction to improve the dispersion and compatibility in the matrix. The structure of the functionalized graphene oxide (TEVS‐GO) was evaluated by Thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectra, X‐ray diffraction (XRD), and energy dispersive X‐ray spectroscopy (EDX). It was found that the TEVS was successfully grafted on the surface of GO. The TEVS‐GO/LSR composites were prepared via in situ polymerization. The structure of the composites was verified by FTIR, XRD, and scanning electron microscopy (SEM). The thermal properties of the composites were characterized by TGA and thermal conductivity. The results showed that the 10% weight loss temperature (T10) increased 16.0°C with only 0.3 wt % addition of TEVS‐GO and the thermal conductivity possessed a two‐fold increase, compared to the pure LSR. Furthermore, the mechanical properties were studied and results revealed that the TEVS‐GO/LSR composites with 0.3 wt % TEVS‐GO displayed a 2.3‐fold increase in tensile strength, a 2.79‐fold enhancement in tear strength, and a 1.97‐fold reinforcement in shear strength compared with the neat LSR. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42582.  相似文献   

17.
Poly(methyl methacrylate)/poly(ethylene oxide) (90/10) blend containing various contents of functionalized graphene was prepared through solution technique and characterized to investigate the effects of functionalized graphene content on mechanical, thermal, and electrical properties of the nanocomposites. Infrared results revealed the interaction between matrix and functionalized graphene. Electron microscopy images of the nanocomposites exhibited a good dispersion of functionalized graphene nanosheets in the blend. The incorporation of functionalized graphene significantly increased the thermal stability and mechanical properties of poly(methyl methacrylate)/poly(ethylene oxide) blend. At electrical percolation threshold achieved at functionalized graphene loading of 4.27?wt%, the conductivity of the nanocomposites was increased by more than eight orders of magnitude.  相似文献   

18.
The effects of crosslinking agents (crosslinkers) on polyimide (PI)/graphene oxide (GO) hybrid films were extensively investigated. The surface of GO was modified with amino groups using 4‐aminobenzylamine to improve compatibility with pyromellitic dianhydride/4,4′‐oxydianiline PI, and two kinds of crosslinkers were used: tris(4‐aminophenyl)amine and 1,3,5‐triazine‐2,4,6‐triamine (melamine). The mechanical, thermal and optical properties of the PI hybrid films were investigated. In particular, the transparency and physical properties of the PI hybrid films containing amino‐functionalized GO with homogeneous dispersion were improved. As the content of the crosslinker increased, a crosslinking network was formed between the PI chains, and the stiffness of the hybrid films was increased. The glass transition temperature, heat resistance and mechanical properties were also enhanced. The PI hybrids prepared with a rigid crosslinker exhibited higher optical transparency due to the reduction of the intermolecular charge transfer interactions with increasing interchain spacing between the PI chains. © 2018 Society of Chemical Industry  相似文献   

19.
In an attempt to enhance the mechanical properties of epoxy/graphene‐based composites, the interface was engineered through the functionalization of graphene oxide (GO) sheets with p‐phenylenediamine; this resulted in p‐phenylenediamine functionalized graphene oxide (GO–pPDA). The morphology and chemical structure of the GO–pPDA sheets were studied by spectroscopic methods, thermal analysis, X‐ray diffraction, and transmission electron microscopy. The characterization results show the successful covalent functionalization of GO sheets through the formation of amide bonds. In addition, p‐phenylenediamine were polymerized on graphene sheets to form crystalline nanospheres; this resulted in a GO/poly(p‐phenylenediamine) hybrid. The mechanical properties of the epoxy/GO–pPDA composite were assessed. Although the Young's modulus showed improvement, more significant improvements were observed in the strength, fracture strain, and plane‐strain fracture toughness. These improvements were attributed to the unique microstructure and strong interface between GO–pPDA and the epoxy matrix. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43821.  相似文献   

20.
Microwave‐induced reduction of graphite oxide (GO) is a promising method for rapid and scalable production of graphene. However, homogeneous incorporation of thus prepared graphene into polymer matrix is still a hard task. In this article, we present a ball‐milling assisted wet compounding method for the fabrications of microwave‐reduced GO (MRGO)/polymer composites. MRGO powders were added into a solution of polystyrene (PS) and then mechanically exfoliated in a stirring mill. Scanning electron microscopy and transmission electron microscopy investigations show that the graphene sheets have been homogeneously dispersed in the PS matrix. The composites show pronouncedly improved properties. The thermal degradation temperature of composites increased by 34°C with the addition of 5wt% MRGO in PS. Up to 76% improvement of storage modulus (at 30°C) is achieved by compounding with 10wt% MRGO.POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号