首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyether ether ketone (PEEK) with a low sulfonation degree was blended using different proportions of sodium rich Smectite clay (3 and 6 wt%) to use as an electrolyte membrane for fuel cell application. The structural functionalities, surface morphologies, and the thermal stability of the resultant composite membranes were characterized using Fourier-transform infrared spectroscopy, X-ray diffraction (XRD), scanning electron microscopy, atom force microscopy, and thermo-gravimetric analysis. FT-IR showed that no chemical reactions take place between the sulfonated polyether ether ketone (SPEEK) and the clay with different ratios. XRD diffractograms illustrated a lower degree of crystallinity of the blended SPEEK than pristine SPEEK. The elaborated composite membranes proved to have a higher thermal stability than SPEEK. Furthermore, the SPEEK/clay composite membranes with 3 and 6 wt% in clay loading had higher water uptake and lower methanol uptake than those in pristine SPEEK It was also shown that, the incorporation of sodium ions rich Smectite clay layers between the clusters in SPEEK improved the conductivity to 2 × 10−2 S/cm at 140°C (for 6 wt% in clay) without compromising the dimensional stability of the composite membranes. These results propose the composite membranes as a potential candidate for methanol fuel cells at temperatures above 120°C making SPEEK composite membrane competitive to that of Nafion membrane.  相似文献   

2.
通过2?丙烯酰胺?2?甲基丙磺酸(AMPS)在1种具有多孔结构的金属有机骨架(MOF)UiO?66?NH2中聚合,获得UiO?66?NH2/PAMPS杂化填料后将其加入磺化聚醚醚酮(SPEEK)中制备纳米复合质子交换膜,并对纳米填料和膜性能进行了测试和表征。其中,UiO?66?NH2/PAMPS中MOF组分的有序孔洞能够为质子提供较为快速的传输通道,同时PAMPS组分上的磺酸基团则为这些通道提供了额外的质子传输位点,从而促进了复合膜中的质子传导。结果表明,填料与基体之间的强静电相互作用使复合膜的溶胀率有所下降;当填料含量达到6 %(质量分数,下同)时,复合膜的质子电导率(σ)从0.040 S/cm 提升到0.057 S/cm,比纯SPEEK高42.5 %,而溶胀率由29 %下降到23 %。  相似文献   

3.
H. Zhang  T. Zhang  J. Wang  F. Pei  Y. He  J. Liu 《Fuel Cells》2013,13(6):1155-1165
Design and fabrication of alternative proton exchange membrane (PEM) with high proton conductivity is crucial to the commercial application of PEM fuel cell. Inspired by the bioadhesion principle, dopamine‐modified halloysite nanotubes (DHNTs) bearing –NH2 and –NH– groups are facilely synthesized by directly immersing natural halloysite nanotubes (HNTs) into dopamine aqueous solution under mild conditions. DHNTs are then embedded into sulfonated poly(ether ether ketone) (SPEEK) matrix to prepare hybrid membranes. HNTs‐filled hybrid membranes are prepared for comparison. The microstructure and physicochemical properties of the membranes are extensively investigated. Fourier transform infrared analysis implies that ordered acid–base pairs (e.g., –S–O+H–HN–, –S–O+H–N–) are formed at SPEEK–DHNT interface through strong electrostatic interaction. In such a way, continuous surface‐induced ion‐channels emerge along DHNTs. Although the incorporation of DHNTs reduces the channel size, water uptake, and area swelling of the hybrid membranes, which in turn would reduce the vehicle‐type proton transfer, the acid–base pairs create continuous pathways for fast proton transfer with low energy barrier via Grotthuss mechanism. Consequently, DHNT‐filled hybrid membrane with 15% DHNTs achieves a 30% increase in proton conductivity and a 52% increase in peak power density of single cell when compared with SPEEK control membrane, particularly.  相似文献   

4.
The proton exchange membrane (PEM) is the core component of a high-performance proton exchange membrane fuel cell (PEMFC). Since the traditional PEM has the disadvantages of poor cell performance and high cost, a new kind of PEM with good proton conductivity, low cost and simple preparation should be explored. In this paper, several different binary hybrid membranes were successfully prepared through one-step encapsulation of different ionic liquids (ILs) in sulfonated poly(ether ether ketone) (SPEEK). The prepared membranes were characterized by scanning electron microscope (SEM), thermogravimetric analysis (TG), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), proton conductivity measurements and dynamic mechanical analysis (DMA). SEM images showed that ILs were fully doped into SPEEK. FT-IR and XPS proved that SPEEK and IL formed a new chemical bond combined with intermolecular hydrogen bonds. The TG results showed that the binary hybrid membranes could maintain stability even at 300°C. The water uptake and swelling ratio showed that the water absorption capacity of the binary composite membrane played a vital role in improving proton conductivity. The proton conductivity study showed that ILs doping also helped to improve the proton conductivity of the SPEEK membrane. When the doping amount of IL was maintained at 30 wt.%, it has the highest proton conductivity, 25 mS cm−1 at 120°C. It was proved that anhydrous hybrid membrane tetraphenyl imidazole sulfate/SPEEK ([IM2][H2PO4]/SPEEK) could be used in PEMFC at medium temperature.  相似文献   

5.
How to simultaneously improved the proton conductivity and mechanical strength is a key problem facing currently used proton exchange membranes (PEMs). Herein, a solid inorganic superacid-zirconium phosphate (ZrP) with a two-dimensional layer structure was combined with one-dimensional carbon nanotubes (CNTs) to prepare hybrid nanofiller ZrP-CNTs by an in situ chemical deposition method. The new hybrid nanofiller was then applied to modify sulfonated polyether ether ketone (SPEEK), a widely used PEM matrix, to obtain a series of composite membranes. The structure and properties of the membranes were fully characterized by SEM, XRD, FTIR, TG, tensile properties, and proton conductivity. The results showed that the proton conductivities of the membranes were significantly improved due to the addition of super solid acid-ZrP that has abundant proton sources or proton sites. Moreover, the composite membranes exhibited better mechanical properties and thermal stability than those of pure SPEEK membrane, owing to the great interface interaction and good compatibility between ZrP-CNTs and SPEEK. The composite membrane (2 wt% ZrP-CNTs) demonstrated the optimal comprehensive performance. Its proton conductivity was 36.63 mS cm−1 and its tensile strength was 37.56 MPa, which was 70% and 10%, respectively, higher than those of the pure SPEEK membrane under the same condition.  相似文献   

6.
A crosslinked epoxy [4,4′‐diglycidyl‐(3,3′,5,5′‐tetramethylbiphenyl) epoxy resin (TMBP)], cured by phenol novolac (PN), was introduced into a sulfonated poly(ether ether ketone) (SPEEK) membrane (ion‐exchange capacity = 2.0 mequiv/g) with a casting‐solution, evaporation, and heating crosslinking method to improve the mechanical properties, dimensional stability, water retention, and methanol resistance. By Fourier transform infrared analysis, the interactions between the sulfonic acid groups and hydroxyl groups in the blend membranes were confirmed. The microstructure and morphology of the blend membranes were investigated with atomic force microscopy. As expected, the blend membranes showed excellent mechanical properties, good thermal properties (thermal stability above 200°C), lower swelling ratios (1.4% at 25°C and 7.0% at 80°C), higher water retention (water diffusion coefficient = 9.8 × 10?6 cm2/s), and a lower methanol permeability coefficient (3.6 × 10?8 cm2/s) than the pristine SPEEK membrane. Although the proton conductivity of the blend membranes decreased, a higher selectivity (ratio of the proton conductivity to the methanol permeability) was obtained than that of the pristine SPEEK membrane. The results showed that the SPEEK/TMBP/PN blend membranes could have potential use as proton‐exchange membranes in direct methanol fuel cells. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
吴洪  杨昊  赵宇宁  李震  姜忠义 《化工学报》2016,67(1):358-367
制备了两种磷酸化改性的介孔二氧化硅亚微米球形颗粒,分别为仅外表面接枝磷酸根基团的颗粒(PMPS-Ⅰ)和内外表面均接枝磷酸根基团的颗粒(PMPS-Ⅱ)。颗粒具有均一的尺寸和规则排布的六面体一维贯通孔道。将制备的二氧化硅颗粒与磺化聚醚醚酮(SPEEK)溶液共混制备杂化膜。与填充PMPS-Ⅰ的杂化膜相比,填充PMPS-Ⅱ的杂化膜显示出较好的质子传导性能。当PMPS-Ⅱ的填充量为5%(质量)时,杂化膜在60℃、100%相对湿度下最高质子传导率为0.241 S·cm-1。研究结果表明,连续贯通的质子传递通道有助于提高杂化膜的质子传导率。  相似文献   

8.
Sulfonated poly(ether ether ketone) (SPEEK) is currently considered to be one of the most potential candidates of commercial perfluorinated sulfonic acid proton exchange membranes. To balance the proton conductivity and mechanical properties of SPEEK, nano TiO2 coated carbon nanotubes (TiO2@CNTs) were prepared using a benzyl alcohol-assisted sol-gel method and then used as a new nanofiller to modify SPEEK to prepare SPEEK/TiO2@CNTs composite membranes. The thick insulated TiO2 coating layer can effectively avoid the risk of electronic short-circuiting formed by CNTs, while the hydrophilicity of TiO2 can also reduce the polar difference between CNTs and SPEEK matrix, thus promoting the homogeneous dispersion of CNTs in the composites. As a result, the composite membranes demonstrated simultaneously improved strength and proton conductivity. Incorporating 5 wt% of TiO2@CNTs exhibited 31% growth in mechanical strength when compared with pure SPEEK. Moreover, the maximum conductivity was 0.104 S cm−1 (80°C) for the composite membrane with 5 wt% of TiO2@CNTs, which was nearly twice as high as that of SPEEK membrane (0.052 S cm−1).  相似文献   

9.
DMFCs用SPEEK/SiOx-S复合质子交换膜   总被引:1,自引:0,他引:1       下载免费PDF全文
A sulfonated poly(ether ether ketone) (SPEEK) membrane with a fairly high degree of sulfonation (DS) can swell excessively and even dissolve at high temperature. To solve these problems, insolvable functionalized silica powder with sulfonic acid groups (SiOx-S) was added into the SPEEK matrix (DS 55.1%) to prepare SPEEK/ SiOx-S composite membranes. The decrease in both the swelling degree and the methanol permeability of the membranes was a dose-dependent result of addition of the SiOx-S powder. Pure SPEEK membrane swelled 52.6% at 80°C, whereas the SPEEK/SiOx-S (15%, by mass) membrane swelled only 27.3% at the same temperature. From room temperature to 80℃, all SPEEK/SPEEK/SiOx-S composite membranes had methanol permeability of about one order of magnitude lower than that of Nafion115. Compared with pure SPEEK membranes, the addition of the SiOx-S powder not only leads to higher proton conductivity, but also increases the dimensional stability at higher temperatures, and greater proton conductivity can be achieved at higher temperature. The SPEEK/SiOx-S (20%, by mass) membrane could withstand temperature up to 145°C, at which in 100% relative humidity (RH) its proton conductivity exceeded slightly that of Nafion115 membrane and reached 0.17 S•cm-1, while pure SPEEK mem-brane dissolved at 90°C. The SPEEK/SiOx-S composite membranes are promising for use in direct methanol fuel cells because of their good dimensional stability, high proton conductivity, and low methanol permeability.  相似文献   

10.
The influence, on membrane nanostructure and properties, of water or ethanol as swelling solvent of sulfonated poly(ether ether ketone) (SPEEK) and zirconia–SPEEK hybrid membranes prepared using the sol–gel process has been investigated. Independent of the solvent, small‐angle X‐ray scattering measurements reveal the existence of a two‐level hierarchical structure in SPEEK of greater sulfonation level, consisting of solvent‐swelled spatially correlated primary SO3H‐rich ionic clusters of around 15 Å in size, forming larger secondary aggregates well dispersed in the PEEK matrix. The size of the primary nanodomains and the connectivity between domains are determining parameters for protonic conductivity, solvent swelling ability and permeability of the membranes. For both SPEEK and zirconia–SPEEK membranes containing ethanol, the pronounced affinity of ethanol molecules with SPEEK leads to an increase in the size of ionic clusters and of the number of connecting channels between clusters compared to membranes containing water. This promotes solvent swelling and proton conductivity. The increase in permeability to water induced by incorporation of ethanol in place of water in both polymeric and hybrid membranes is less in the hybrid membranes. This result suggests that the potential use of zirconia–SPEEK hybrid membranes in direct alcohol fuel cells is more promising than that of pure SPEEK, due not only to the less probable alcohol and water penetration in the membranes associated with their lower permeability, but also to the fact that an eventual penetration of alcohol in hybrid membranes should reduce the risk of cathode flooding compared to zirconia‐free SPEEK membranes. Copyright © 2011 Society of Chemical Industry  相似文献   

11.
Mixed matrix membranes based on zeolite 4A‐methane sulfonic acid (MSA)‐sulfonated poly(ether ether ketone) (SPEEK) are evaluated as a potential polymer electrolyte membrane (PEM) for direct methanol fuel cells (DMFCs). Ion‐exchange capacity, sorption of water, and water–methanol mixture, proton conductivity, and methanol permeability for the mixed‐matrix membranes have been extensively investigated. The mixed‐matrix membranes are also characterized for their cross‐sectional morphology, mechanical, and thermal properties. DMFCs employing SPEEK‐MSA (20 wt.%) blend, zeolite 4A (4 wt.%)‐SPEEK‐MSA (20 wt.%) mixed matrix membranes deliver peak power densities of 130 and 159 mW cm–2, respectively; while a peak power density of only 95 mW cm–2 is obtained for the DMFC employing pristine SPEEK membrane at 70 °C. The results showed that these SPEEK based mixed matrix membranes exhibit higher DMFC performance and lower methanol permeability in comparison to Nafion‐117 membrane.  相似文献   

12.
Polymer nanocomposite membranes based on sulfonated poly(arylene ether sulfonate) (SPAES) containing a flake filler (Laponite) with varying degrees of sulfonation, were prepared and characterized for application in direct methanol fuel cells (DMFCs). Unlike most other clays, Laponite crystals are very small in size with a very low aspect ratio (diameter to thickness ratio) of 25–30. They improve the mechanical, thermal properties and decreased the fuel permeability. However, polymer composite membranes containing non-proton conducting inorganic particles tend to show low proton conductivity, as compared with pristine polymer membranes. To resolve this problem, prior to the preparation of the composite membranes, Laponite-Na+(NLa) was sulfonated with various amounts of organo silanes (3-Mercaptopropyl trimethoxysilane (SH-silane)) via an ion exchange method. Functionalized Laponite with the organic silane compound showed higher ion exchange capacity and ion conductivity, respectively. In order to minimize the loss of proton conductivity while reducing the methanol permeability, various amounts (0.5–2.0 wt%) of the organically sulfonated Laponite (SLa) were introduced into the SPAES matrices. The performances of hybrid membranes for DMFCs in terms of mechanical properties, behavior of water in membranes, proton conductivity and methanol permeability were investigated.  相似文献   

13.
以二氧化硅和磷钨酸改性磺化聚醚醚酮制得一种新型磺化聚醚醚酮复合膜。复合膜中杂多酸仍然保持着Keggin型PW12O430-阴离子的特征结构,二氧化硅和磷钨酸以无定形状态均匀分散于复合膜中。磷钨酸/二氧化硅/磺化聚醚醚酮复合膜的阻醇性能优于Nafion115;质子导电性能随着温度的提高有所增加。复合膜在磷钨酸中具有良好的稳定性。  相似文献   

14.
Poly(arylene ether benzonitrile) (PAEBN) was synthesized with 2,6‐dichlorobenzonitrile and biphenol. PAEBNs with various molecular weights (MWs), 1,640,000 and 185,000 g/mol, were synthesized by control of the stoichiometry of the monomers and were blended with sulfonated poly(ether ether ketone) (SPEEK). The effects of MW on the water uptake, swelling, methanol permeability, and proton conductivity of the SPEEK/PAEBN blend membranes were investigated. The molecular mobility of the SPEEK/PAEBN blends was also examined in this study. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
In this study, a method is developed to fabricate sulfonated poly (ether ether ketone)/phosphotungstic acid‐polyaniline (SPEEK/HPW‐PANI) membranes by in situ polymerization of aniline for the purpose of decreasing the weight loss of HPW in the membranes. The synthesis involves the production of a SPEEK/HPW hybrid membrane followed by different layer of PANI coatings on the membrane surface, and subsequent treatment using drying in vacuum procedures. The scanning electronic microscopy images showed that HPW had good compatibility with SPEEK polymers and energy dispersive X‐ray spectroscopy revealed the successfully doping with HPW and polymerization of PANI. The surface of SPEEK/HPW‐PANI becomes more compact than that of SPEEK/HPW and pure SPEEK, which may lead to reduce the water uptake and swelling property. The proton conductivity was found for the SPEEK/HPW‐PANI‐5 composite membrane (91.53 mS/cm at 80°C) higher than that of pure SPEEK membrane (68.72 mS/cm at 80°C). Better thermal stability was determined in both SPEEK/HPW and SPEEK/HPW‐PANI membranes than pristine SPEEK membrane. Therefore, PANI is a good potential coating for organic–inorganic hybrid e.g. SPEEK/HPW membrane materials to improve their hydrothermal stable properties and SPEEK/HPW PANI is a material that shows promise as a proton exchange membranes. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41033.  相似文献   

16.
A series of semihomogeneous cation‐exchange membranes were prepared with binary blend systems, such as sulfonated phenolphthalein poly(ether ether ketone) (SPEEK‐C)/sulfonated poly(phenylene sulfide) (SPPS), or ternary blend systems, such as phenolphthalein poly(ether ether ketone) (PEEK‐C)/SPEEK‐C/SPPS, by solution blending and phase inversion, in which PEEK‐C and SPEEK‐C acted as binders and SPPS powder acted as a polyelectrolyte. Compared with homogeneous and heterogeneous membranes, the prepared semihomogeneous membranes had good electrochemical properties and mechanical strength as well as good dimensional stability. The fundamental properties of the membranes, such as the ion‐exchange capacity, water content, electrical resistance, transport number, diffusion coefficient of the electrolytes, and streaming potential, were largely dependent on both the loading of the SPPS resin and the sulfonation degree of PEEK‐C. Through the adjustment of these two important parameters, a series of semihomogeneous membranes with the desired conductivity and selectivity and the proper water content for different industrial purposes, such as electrodialysis, diffusional dialysis, and proton exchange, were achieved. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1478–1485, 2004  相似文献   

17.
New types of metal–organic framework based hybrid materials are designed and prepared, which involving the hybridization of various content of boron phosphate (BPO4) with the precursor of HKUST-1. The structure of obtained HKUST-1/BPO4 hybrid materials (HB) is fully investigated, and then applied to construct sulfonated poly (ether ether ketone) (SPEEK) based proton exchange membranes (SPEEK/HB). Owing to effective interactions between hybrid materials and SPEEK matrix, the achieved composite membranes reflect a considerable improvement in mechanical and thermal stability, oxidative stability, methanol permeation, and proton conductivity. In particular, the tensile strength of SPEEK/HB-20 composite membrane is 41.3 MPa, which is 1.5 times higher than pristine SPEEK, and the methanol permeability reduced to one-third of SPEEK at the same time. The SPEEK/HB-10 displays the highest proton conductivity of 37.4 mS cm−1 at 80 °C, which is obviously higher than pristine SPEEK. These results reveal that the hybridization of HKUST-1 with BPO4 provide a promising candidate in the modification of proton exchange membranes (PEMs), and this strategy also possess great application potential in other types of MOFs-based hybrid materials.  相似文献   

18.
A sulfonated poly(ether ether ketone) (SPEEK) membrane with fairly high degree of sulfonation (DS) swells excessively and even dissolves at high temperature. To solve these problems, sulfonated phenolphthalein poly(ether sulfone) (SPES-C, DS 53.7%) is blended with the SPEEK matrix (DS 55.1%, 61.7%) to prepare SPEEK/SPES-C blend membrane. The decrease in swelling degree and methanol permeability of the membrane is dose-dependent. Pure SPEEK (DS 61.7%) membrane dissolves completely in water at 70ºC, whereas the swelling degree of the SPEEK (DS 61.7%)/SPES-C (40%, by mass) membrane is 29.7% at 80ºC. From room temperature to 80ºC, the methanol permeability of all SPEEK (DS 55.1%)/SPES-C blend membranes is about one order of magnitude lower than that of Nafion®115. At higher temperature, the addition of SPES-C polymer increases the dimensional stability and greater proton conductivity can be achieved. The SPEEK (DS 55.1%)/SPES-C (40%, by mass) membrane can withstand temperatures up to 150ºC. The proton conductivity of SPEEK (DS 55.1%)/SPES-C (30%, by mass) membrane approaches 0.16 S•cm-1, matching that of Nafion115 at 140ºC and 100% RH, while pure SPEEK (DS 55.1%) membrane dissolves at 90ºC. The SPEEK/SPES-C blend membranes are promising for use in direct methanol fuel cells because of their good dimensional stability, high proton conductivity, and low methanol permeability.  相似文献   

19.
Development of alternate materials to Nafion, based on ionically conducting polymers and their blends is important for the wider applications of proton exchange membrane fuel cells. In this work, blends of sulfonated poly(ether ether ketone) (SPEEK) with poly(ether sulfone) (PES) are investigated. SPEEK with various ion exchange capacity (IEC) was prepared and blended with PES, which is nonionic and hydrophobic in nature. A comparative study of the water uptake, proton conductivity, and thermo‐mechanical characteristics of SPEEK and the blend membranes as a function of the IEC is presented. Addition of PES decreases the water uptake and conductivity of SPEEK. Chemical and thermal stability and mechanical properties of the membrane improve with the addition of PES. The effect of water content on the thermo‐mechanical properties of membranes was also studied. The morphology of blend membranes was studied using SEM to understand the microstructure and miscibility of the components. On the basis of the results, a plausible microstructure of the blends is presented, and is shown to be useful in understanding the variation of different properties with blending. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
Sulfonated poly(ether ether ketone) (SPEEK) membranes were modified by impregnation with the ionic liquid (IL) 1‐butyl‐3‐methylimidazolium tetrafluoroborate (BMI.BF4) by immersion into an IL aqueous solution for different periods of time. The modified membranes were investigated by thermogravimetric analyses (TGA), differential scanning calorimetry (DSC), ion exchange capacity (IEC), and conductivity. The SPEEK membrane immersed into the IL aqueous solution for 2 min showed greater dimensional and thermal stability than the pristine SPEEK membrane, and achieved higher decomposition temperatures. It also presented a higher conductivity value (1.0 mS cm?1), indicating that BMI.BF4 is a promoter of proton conductivity. The membrane electrode assembly (MEA) produced reached maximum values of power density of 0.13 W cm?2 and current density of 0.54 A cm?2 during fuel cell operation. The results indicate that the SPEEK membrane modified by immersion for 2 min is promising for use in a proton exchange membrane fuel cell. Its performance yielded values very close to those obtained with Nafion, which reaches maximum values of power density of 0.19 W cm?2 and current density of 0.77 A cm?2. POLYM. ENG. SCI. 56:1037–1044, 2016. © 2016 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号