首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biodegradability, morphology, and mechanical thermal properties of composite materials composed of polylactide (PLA) and sisal fibers (SFs) were evaluated. Composites containing acrylic acid‐grafted PLA (PLA‐g‐AA/SF) exhibited noticeably superior mechanical properties because of greater compatibility between the two components. The dispersion of SF in the PLA‐g‐AA matrix was highly homogeneous as a result of ester formation and the consequent creation of branched and crosslinked macromolecules between the carboxyl groups of PLA‐g‐AA and hydroxyl groups in SF. Furthermore, with a lower melt temperature, the PLA‐g‐AA/SF composite is more readily processed than PLA/SF. Both composites were buried in soil to assess biodegradability. Both the PLA and the PLA‐g‐AA/SF composite films were eventually completely degraded, and severe disruption of film structure was observed after 6–10 weeks of incubation. Although the degree of weight loss after burial indicated that both materials were biodegradable even with high levels of SF, the higher water resistance of PLA‐g‐AA/SF films indicates that they were more biodegradable than those made of PLA. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
Phenol formaldehyde resin (PF) reinforced with short sisal fibers (SF) were obtained by two methods, direct‐mixing and polymerization filling. Impact and bending properties of resulting composites were compared. Under the same compression molding conditions, polymerization filled composites showed better mechanical properties than those of direct‐mixed composites. The influences of fiber modifications on the mechanical properties of SF/PF in‐situ (polymerization filled) composites have been investigated. Treated‐SF‐reinforced composites have better mechanical properties than those of untreated‐SF‐reinforced composites. The effects of SF on water absorption tendencies of SF/PF composites have also been studied. In addition, sisal/glass (SF/GF) hybrid PF composites of alkali‐treated SF were prepared. Scanning electron microscopic studies were carried out to study the fiber‐matrix adhesion. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

3.
The present study focuses on the melamine–formaldehyde (MF) coating ratio and silanization of PLA/sisal composites. Poly(lactic acid) (PLA) was melt blended with short sisal fiber with and without MF resin coating. MF was applied at different weight ratios (sisal:MF = 1:1; 1:3, and 1:5) to coat the untreated or silanized sisal fibers which were incorporated up to 20 parts per hundred resin (phr) amount in PLA. PLA/sisal composites were produced by compression molding. It was found that the sisal:MF coating ratio at 1:1 by weight improved the tensile strength and tensile modulus of the composite with 10 phr sisal by 4% and 57%, respectively, compared to the virgin PLA. The initial and final decomposition (Ti) and (Tf) of PLA with untreated sisal were changed from 330.8 and 367.1 to 336.2 and 370.4 °C, respectively, after MF‐coating (sisal:MF weight ratio = 1:1). This enhancement in thermal stability was attributed to the strong interaction between the MF and sisal fiber. The water absorption of PLA/MF–sisal composites slightly decreased with increasing sisal:MF ratio. This is due to the fact that the MF‐coating substantially reduced the hydrophilic properties of sisal. Moreover, FTIR spectra and SEM images proved that sisal fibers were coated by MF resin successfully. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45681.  相似文献   

4.
m‐Isopropenyl‐α, α‐dimethylbenzyl isocyanate (m‐TMI) was grafted on isotactic polypropylene (PP) using di‐cumyl peroxide as a reaction initiator under varying reaction conditions to yield m‐TMI‐g‐PP coupling agent with four sets of grafting yield and molecular weight. Grafting yield of the synthesized m‐TMI‐g‐PP were 1.80%, 2.01%, 9.05%, and 8.86% and molecular weight of the corresponding grafted polymer were 129,225; [Correction made here after initial online publication.] 187,240; 124,130; and 180,838, respectively. Rubberwood flour reinforced polypropylene composites were prepared using these coupling agents and tested for mechanical properties. m‐TMI‐g‐PP coupling agent with 9.09% grafting and 124230 Mw was found to give the highest tensile and flexural strengths. Flexural modulus of the coupled composites was higher than uncoupled composites. Interfacial region of the composites characterized by scanning electron microscope (SEM) suggest effective wetting of fiber by PP in the case of coupled composites. The effect of fiber loading on composites indicates continuous increment in tensile and flexural strengths in coupled composites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44196.  相似文献   

5.
Fully bio‐based and biodegradable composites were compression molded from unidirectionally aligned sisal fiber bundles and a polylactide polymer matrix (PLLA). Caustic soda treatment was employed to modify the strength of sisal fibers and to improve fiber to matrix adhesion. Mechanical properties of PLLA/sisal fiber composites improved with caustic soda treatment: the mean flexural strength and modulus increased from 279 MPa and 19.4 GPa respectively to 286 MPa and 22 GPa at a fiber volume fraction of Vf = 0.6. The glass transition temperature decreased with increasing fiber content in composites reinforced with untreated sisal fibers due to interfacial friction. The damping at the caustic soda‐treated fibers‐PLLA interface was reduced due to the presence of transcrystalline morphology at the fiber to matrix interface. It was demonstrated that high strength, high modulus sisal‐PLLA composites can be produced with effective stress transfer at well‐bonded fiber to matrix interfaces. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40999.  相似文献   

6.
In this research, the mechanical, acoustical, thermal, morphological, and infrared spectral properties of untreated, heat and alkaline‐treated sisal fiber‐reinforced poly‐lactic‐acid bio‐composites were analyzed. The bio‐composite samples were fabricated using a hot press molding machine. The properties mentioned above were evaluated and compared with heat‐treated and alkaline‐treated sisal fibers. Composites with heat‐treated sisal fibers were found to exhibit the best mechanical properties. Thermo‐gravimetric analysis (TGA) was conducted to study the thermal degradation of the bio‐composite samples. It was discovered that the PLA‐sisal composites with optimal heat‐treated at 160°C and alkaline‐treated fibers possess good thermal stability as compared with untreated fiber. The results indicated that the composites prepared with 30wt % of sisal had the highest sound absorption as compared with other composites. Evidence of the successful reaction of sodium hydroxide and heat treatment of the sisal fibers was provided by the infrared spectrum and implied by decreased bands at certain wavenumbers. Observations based on scanning electron microscopy of the fracture surface of the composites showed the effect of alkaline and heat treatment on the fiber surface and improved fiber‐matrix adhesion. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42470.  相似文献   

7.
This article concerns the effectiveness of various types and degrees of surface modification of sisal fibers involving dewaxing, alkali treatment, bleaching cyanoethylation and viny1 grafting in enhancing the mechanical properties, such as tensile, flexural and impact strength, of sisal‐polyester biocomposites. The mechanical properties are optimum at a fiber loading of 30 wt%. Among all modifications, cyanoethylation and alkali treatment result in improved properties of the biocomposites. Cyanoethylated sisal‐polyester composite exhibited maximum tensile strength (84.29 MPa). The alkali treated sisal‐polyester composite exhibited best flexural (153.94 MPa) and impac strength (197.88 J/m), which are, respectively, 21.8% and 20.9% higher than the corresponding mechanical properties of the untreated sisal‐polyester composites. In the case of vinyl grafting, acrylonitrile (AN)‐grafted sisal‐polyester composites show better mechanical properties than methyl‐methacrylate (MMA)‐grafted sisal composites. Scanning electron microscopic studies were carried out to analyze the fiber‐matrix interaction in various surface‐modified sisal‐polyester composites.  相似文献   

8.
With the aim to utilize the waste biomass of wheat straw, all‐straw‐fiber composites were elaborately manufactured though producing plastic benzylated wheat straw (BWS) as matrix and reinforced by additional straw fibers (ASF). The extent of benzylation for wheat straw was greatly improved with the aid of ball milling pretreatment for 4 h. BWS yielded higher weight percent gain (WPG) under the same reaction conditions with the benzylation of wood flour, lower glass transition temperature (Tg) as well as better flowability upon heating compared to benzylated mulberry branches (BMB) with comparable WPG. All‐straw‐fiber composites performed higher ASF loading capacity and better mechanical properties with optimum ASF content than BMB based composites and by benzylation decreased water absorption significantly. SEM provided evidence for strong adhesion in the interface between BWS and ASF. From the overall performance, the All‐straw‐fiber composites can be regarded as a potential alternative to wood plastic composites. POLYM. COMPOS., 35:419–426, 2014. © 2013 Society of Plastics Engineers  相似文献   

9.
Sisal fiber (SF) surface modification was carried out by grafting with methyl methacrylate (MMA) using cerium and ammonium nitrate as initiator. The effects of reaction time, monomer, and initiator concentration on the grafting parameters were systematically investigated. The results showed that MMA was successfully grafted onto the sisal fiber surface. The PMMA‐grafted sisal fibers were melt blended with polypropylene (PP) and then injection molded. The PP/SF composites were characterized by means of thermal analysis, mechanical testing, wide‐angle X‐ray diffraction, and SEM examination. PMMA grafted onto the surface of SF enhanced the intermolecular interaction between the reinforcing SF and PP matrix, improved the dispersion of SF in the PP matrix, and promoted the formation of β‐crystalline PP. These enhanced the thermal stability and mechanical properties of PP/SF composites. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1055–1064, 2003  相似文献   

10.
The incorporation of natural fibers with polymer matrix composites (PMCs) has increasing applications in many fields of engineering due to the growing concerns regarding the environmental impact and energy crisis. The objective of this work is to examine the effect of fiber orientation and fiber content on properties of sisal‐jute‐glass fiber‐reinforced polyester composites. In this experimental study, sisal‐jute‐glass fiber‐reinforced polyester composites are prepared with fiber orientations of 0° and 90° and fiber volume of sisal‐jute‐glass fibers are in the ratio of 40:0:60, 0:40:60, and 20:20:60 respectively, and the experiments were conducted. The results indicated that the hybrid composites had shown better performance and the fiber orientation and fiber content play major role in strength and water absorption properties. The morphological properties, internal structure, cracks, and fiber pull out of the fractured specimen during testing are also investigated by using scanning electron microscopy (SEM) analysis. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42968.  相似文献   

11.
The aim of this study was to develop fiber reinforced polylactic acid (PLA) composites via twin screw extrusion with the addition of a compatibilizer. Initial studies were performed to establish the optimum initiator percentage in terms of grafting efficiency between PLA and maleic anhydride (MA). Results show that PLA MA 7 obtained the highest level of grafting efficiency. Subsequent viscometric titration analysis on the compatibilized and uncompatibilized PLA composites showed an increase in the interfacial adhesion for the compatibilized PLA composites. Tensile and flexural properties also confirmed this increase in interfacial adhesion for the compatibilized composites, where the mechanical properties improved considerably, compared with virgin PLA and uncompatibilized composites. Results showed that the mechanical properties increase as PLA‐g‐MA loading increased. Finally, the rate of compostability of compatibilized composites decreased with the addition of PLA‐g‐MA. This was attributed to a lack of water absorption due to the bonding of hydroxyl groups on the fibers surface with MA. POLYM. COMPOS., 35:1792–1797, 2014. © 2014 Society of Plastics Engineers  相似文献   

12.
《Polymer Composites》2017,38(6):1053-1062
The present work focused on thermal behavior of biocomposites based on poly(lactic acid) (PLA) reinforced with untreated and benzoyl peroxide (BP) treated banana/sisal fibers (BSF) combination. Fabrication of biocomposites was performed by extrusion followed by injection molding. Fourier transformed infrared (FTIR) spectral technique ascertained the nature of bonding between BSF and PLA. The thermal properties of virgin PLA, UT‐BSF/PLA, and BP‐T‐BSF/PLA composites were studied by DSC and TGA analysis. DSC analysis indicated no significant changes in the glass transition temperature (T g) and melting temperature (T m) of virgin PLA, UT‐BSF/PLA, and BP‐T‐BSF/PLA composites and no sign of crystallization for both virgin PLA, UT‐BSF/PLA composites. However, crystallization was observed in BP‐T‐BSF/PLA composites. The BP‐T‐BSF/PLA composite exhibited a delayed thermal degradation pattern from TGA analysis when compared to that of UT‐BSF/PLA composites and virgin PLA as well. Further, the effect of BSF treatment and hybridization of BSF with PLA on the degree of crystallinity (X c) were explored in detail. The above said composites were also investigated through scanning electron microscope (SEM) micrographs to examine the adhesion between the PLA and BSF. In addition, the results of SEM acquired are in good agreement with the data resulted from FTIR and thermal characterization. POLYM. COMPOS., 38:1053–1062, 2017. © 2015 Society of Plastics Engineers  相似文献   

13.
This study examined the dynamic mechanical properties of sisal fiber reinforced unsaturated polyester (UP) toughened epoxy nanocomposites. The chemical structures changes in Epoxy, UP and UP toughened epoxy (Epoxy/UP) systems were characterized by Proton Nuclear magnetic resonance (1HNMR) spectroscopy. The morphological alterations of the nanocomposites were analyzed by X‐ray diffraction (XRD) and transmission electron microscopy (TEM). The untreated, chemically treated fibers, nanoclays, and the fiber reinforced Epoxy/UP nanocomposites were confirmed by FTIR spectrometer. The obtained mechanical results showed that alkali‐silane treated fibers improve the tensile strength (96%) and flexural strength (60%) of the Epoxy/UP nanocomposite than that of Epoxy/UP blend due to the strong interfacial bonding between the sisal fiber and matrix. The fracture toughness (KIC) and fracture energy (GIC) of treated sisal fiber reinforced DGEBA/UP/C30B nanocomposites found to be higher than that of untreated sisal fiber nanocomposites. The dynamic mechanical analysis (DMA) reveals that the fiber reinforced Epoxy/UP nanocomposites contains 30 wt% treated fiber and 1 wt% nanoclays, exhibits the highest storage modulus and better glass transition temperature (Tg) among the other kind of systems. The surface morphology of the fibers, fractured surface of the resins and composites were confirmed by scanning electron microscope (SEM). POLYM. COMPOS., 37:2832–2846, 2016. © 2015 Society of Plastics Engineers  相似文献   

14.
The dynamic mechanical properties of macro and microfibers of oil palm‐reinforced natural rubber (NR) composites were investigated as a function of fiber content, temperature, treatment, and frequency. By the incorporation of macrofiber to NR, the storage modulus (E') value increases while the damping factor (tan δ) shifts toward higher temperature region. As the fiber content increases the damping nature of the composite decreases because of the increased stiffness imparted by the natural fibers. By using the steam explosion method, the microfibrils were separated from the oil palm fibers. These fibers were subjected to treatments such as mercerization, benzoylation, and silane treatment. Resorcinol‐hexamethylenetetramine‐hydrated silica was also used as bonding agent to increase the fiber/matrix adhesion. The storage modulus value of untreated and treated microfibril‐reinforced composites was higher than that of macrofiber‐reinforced composites. The Tg value obtained for this microfibril‐reinforced composites were slightly higher than that of macrofiber‐reinforced composites. The activation energy for the relaxation processes in different composites was also calculated. The morphological studies using scanning electron microscopy of tensile fracture surfaces of treated and untreated composites indicated better fiber/matrix adhesion in the case of treated microfibril‐reinforced composites. Finally, attempts were made to correlate the experimental dynamic properties with the theoretical predictions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
The present work focuses on the microwave synthesis of lactic acid‐grafted‐gum arabic (LA‐g‐GA) by polycondensation reaction and its influence as an additive to improve the gas barrier properties of poly(lactic acid) (PLA) films, prepared by solution casting method. It is observed that during the synthesis of LA‐g‐GA, hydrophilic gum is converted into hydrophobic due to grafting of in situ grown hydrophobic oligo‐(lactic acid). Subsequently, PLA/LA‐g‐GA bionanocomposite films are fabricated and characterized for structural, thermal, mechanical and gas barrier properties. Path breaking reduction in oxygen permeability (OP) of ~10 folds is achieved in case of PLA films containing LA‐g‐GA as filler. However, water vapor transmission rate (WVTR) is reduced up to 27% after 5 wt % addition of filler. Reduction in OP of this order of magnitude enables the PLA to compete with PET in term of enhancing shelf life and maintaining the food quality. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43458.  相似文献   

16.
Composites based on isotactic polypropylene (PP) and sisal fiber (SF) were prepared by melt mixing and injection molding. The melt mixing characteristics, thermal properties, morphology, crystalline structure, and mechanical behavior of the PP/SF composites were systematically investigated. The results show that the PP/SF composites can be melt mixed and injection molded under similar conditions as the PP homo‐polymer. For the composites with low sisal fiber content, the fibers act as sites for the nucleation of PP spherulites, and accelerate the crystallization rate and enhance the degree of crystallinity of PP. On the other hand, when the sisal fiber content is high, the fibers hinder the molecular chain motion of PP, and retard the crystallization. The inclusion of sisal fiber induces the formation of β‐form PP crystals in the PP/SF composites and produces little change in the inter‐planar spacing corresponding to the various diffraction peaks of PP. The apparent crystal size as indicated by the several diffraction peaks such as L(110)α, L(040)α, L(130)α and L(300)β of the α and β‐form crystals tend to increase in the PP/SF composites considerably. These results lead to the increase in the melting temperature of PP. Moreover, the stiffness of the PP/SF composites is improved by the addition of sisal fibers, but their tensile strength decreases because of the poor interfacial bonding. The PP/SF composites are toughened by the sisal fibers due to the formation of β‐form PP crystals and the pull‐out of sisal fibers from the PP matrix, both factors retard crack growth.  相似文献   

17.
Eighty/twenty polypropylene (PP)/styrene–ethylene–butylene–styrene (SEBS) and 80/20 PP/maleated styrene–ethylene–butylene–styrene (SEBS‐g‐MA) blends reinforced with 30 wt % short glass fibers (SGFs) were prepared by extrusion and subsequent injection molding. The influence of the maleic anhydride (MA) functional group grafted to SEBS on the properties of SGF/SEBS/PP hybrid composites was studied. Tensile and impact tests showed that the SEBS‐g‐MA copolymer improved the yield strength and impact toughness of the hybrid composites. Extensive plastic deformation occurred at the matrix interface layer next to the fibers of the SGF/SEBS‐g‐MA/PP composites during impact testing. This was attributed to the MA functional group, which enhanced the adhesion between SEBS and SGF. Differential scanning calorimetry measurements indicated that SEBS promoted the crystallization of PP spherulites by acting as active nucleation sites. However, the MA functional group grafted to SEBS retarded the crystallization of PP. Finally, polarized optical microscopy observations confirmed the absence of transcrystallinity at the glass‐fiber surfaces of both SGF/SEBS/PP and SGF/SEBS‐g‐MA/PP hybrid composites. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1303–1311, 2002  相似文献   

18.
In the present study, the mechanical and thermal properties of sisal fiber‐reinforced unsaturated polyester (UP)‐toughened epoxy composites were investigated. The sisal fibers were chemically treated with alkali (NaOH) and silane solutions in order to improve the interfacial interaction between fibers and matrix. The chemical composition of resins and fibers was identified by using Fourier‐transform infrared spectroscopy. The UP‐toughened epoxy blends were obtained by mixing UP (5, 10, and 15 wt%) into the epoxy resin. The fiber‐reinforced composites were prepared by incorporating sisal fibers (10, 20, and 30 wt%) within the optimized UP‐toughened epoxy blend. Scanning electron microscopy was used to analyze the morphological changes of the fibers and the adhesion between the fibers and the UP‐toughened epoxy system. The results showed that the tensile and flexural strength of (alkali‐silane)‐treated fiber (30 wt%) ‐reinforced composites increased by 83% and 55%, respectively, as compared with that of UP‐toughened epoxy blend. Moreover, thermogravimetric analysis revealed that the (alkali‐silane)‐treated fiber and its composite exhibited higher thermal stability than the untreated and alkali‐treated fiber systems. An increase in storage modulus and glass transition temperature was observed for the UP‐toughened epoxy matrix on reinforcement with treated fibers. The water uptake behavior of both alkali and alkali‐silane‐treated fiber‐reinforced composites is found to be less as compared with the untreated fiber‐reinforced composite. J. VINYL ADDIT. TECHNOL., 23:188–199, 2017. © 2015 Society of Plastics Engineers  相似文献   

19.
The main objective of this research was to synthesize a new compatibilisant agent (PVC‐g‐MA), which was grafted from the maleic anhydride on the PVC chains. The presence of maleic anhydride grafting on PVC was made evident by infrared analysis. PVC‐g‐MA was used like compatibilisant to solve the problem of the incompatibility between the hydrophobic polymeric matrix (PVC) and hydrophilic fiber (alfa). Composites samples were prepared with different alfa fiber loading (10, 20, and 30 wt %) and incorporating PVC‐g‐MA (1, 3, and 5 wt %) or PP‐g‐MA (3 wt %). The tensile properties, the thermal stability and the morphology of the composites were investigated. The result indicated that the PVC‐g‐MA increased the interfacial adhesion between the fibers and the polymer matrix and this effect was better than that obtained for the maleated‐polypropylene‐coupled composites. Microstructure analysis of the fractured surfaces of MAPP modified composites confirmed improved interfacial bonding. The addition of alfa and PVC‐g‐MA increased the thermal stability of the composites. The temperature of degradation of the polymer matrix increased about 16°C in comparison to the noncoupled composite, indicating that PVC‐g‐MA improved the thermal stability of the polymer. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

20.
通过热压成型的方式制备了剑麻纤维增强聚乳酸(PLA/SF)复合材料,并通过K蛋白酶降解方式研究了该复合材料的生物降解性能,利用差热扫描量热仪测试分析了复合材料在酶降解过程中的非等温结晶性能。研究发现,剑麻纤维的加入加快了聚乳酸及其复合材料的降解速率,且随着剑麻纤维含量的增加,其降解速率提高;剑麻纤维的加入对聚乳酸的结晶性能有一定的影响,进而也影响了复合材料的酶水解速度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号