首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The homogeneous dispersion of nanofillers and filler–matrix interfacial interactions are important factors in the development of high‐performance polymer materials for various applications. In the present work, a simple solution‐mixing method was used to prepare multi‐walled carbon nanotube (MWCNT)–graphene (G) (3:1, 1:1, 1:3) hybrids followed by their characterization through wide‐angle X‐ray diffraction, transmission electron microscopy and thermogravimetric analyses. Subsequently, MWCNT–G (1:1) hybrid was used as reinforcing filler in the formation of silicone rubber (VMQ) nanocomposites by solution intercalation, and their morphology and properties were investigated. Our findings showed that MWCNT–G (0.75 wt%)/VMQ composite exhibited significant improvements in tensile strength (110%) and Young's modulus (137%) compared to neat VMQ. The thermal stability of MWCNT–G (1 wt%)/VMQ was maximally improved by 154 °C compared to neat VMQ. Differential scanning calorimetry demonstrated the maximum improvement of glass transition temperature (4 °C), crystallization temperature (8 °C) and melting temperature (5 °C) for MWCNT–G (1 wt%)/VMQ nanocomposite with respect to neat VMQ. Swelling measurements confirmed that the crosslink density and solvent resistance were a maximum for hybrid nanocomposites. Such improvements in the properties of MWCNT–G/VMQ nanocomposites could be attributed to a synergistic effect of the hybrid filler. © 2013 Society of Chemical Industry  相似文献   

2.
In this study, aromatic sulfonated poly(sulfone‐pyridine‐amide) (S‐PSPA) has been prepared via polycondensation of sulfonated monomer 1‐(4‐thiocarbamoylaminophenyl‐sulfonylphenyl)thiourea and 2,6‐pyridinedicarboxylic acid at high temperature. Mechanically robust and thermally stable hybrid membranes were prepared using non‐functional and functional multiwalled carbon nanotube (MWCNT) i.e., S‐PS/S‐PSPA/MWCNT‐NF and S‐PS/S‐PSPA/MWCNT via solution blending. Field emission scanning electron microscopy exhibited porous membrane structure for 0.1–0.5 wt% nanotube loading, whereas well‐aligned functional MWCNT were observed in 1 wt% loaded sample. Increasing the functional nanotube content from 0.1 to 1 wt% increased tensile strength of functional S‐PS/S‐PSPA/MWCNT hybrids from 62.19 to 65.29 MPa compared with non‐functional hybrid (53.34 MPa) and neat S‐PS/S‐PSPA. 10% decomposition temperature of S‐PS/S‐PSPA/MWCNT 0.1–1 was in the range 491–502°C, while S‐PS/S‐PSPA/MWCNT‐NF showed relatively lower thermal stability (T10 489°C). Glass transition temperature of functional S‐PS/S‐PSPA/MWCNT was also higher (201–243°C) relative to S‐PS/S‐PSPA/MWCNT‐NF (194°C). Furthermore, functional MWCNT‐based membranes had higher ion exchange capacity (IEC) 3.2–3.6 mmol/g and lower activation energies (95–36 kJ/mol). Novel functional membranes also revealed high proton conductivity 1.68–2.55 S/cm in a wide range of humidity at 80°C higher than that of perfluorinated Nafion® membrane (1.1 ×10?1 S/cm) at 80°C (94% RH). POLYM. ENG. SCI., 55:1776–1786, 2015. © 2014 Society of Plastics Engineers  相似文献   

3.
Homogeneous multiwalled carbon nanotube/montmorillonite hybrid filler (HMM) dispersion was prepared by co‐ultrasonication and was subsequently used to prepare ethylene‐co‐vinyl acetate (EVA) nanocomposites by solution blending method. XRD and TEM analysis of HMM confirm significant interaction between the montmorillonite (MMT) layers and multiwalled carbon nanotubes (MWCNT) in line with previous reports. Analysis of the nanocomposites shows the constituent fillers to be homogeneously dispersed in EVA matrix. Mechanical properties of neat EVA are remarkably improved with HMM content up to 3 wt% followed by reversion. Maximum improvement observed in tensile strength, elongation at break, and toughness are 424%, 109%, and 1122%, respectively. Results show maximum thermal stability at 4 wt% and best dielectric response at 1 wt% HMM content. Exceptional mechanical and dielectric properties of EVA nanocomposites attained may be attributed to homogeneous dispersion of fillers and improved polymer–filler interaction. Comparison shows excellent synergy between MWCNT and MMT towards mechanical reinforcement of EVA. POLYM. ENG. SCI., 58:1155–1165, 2018. © 2017 Society of Plastics Engineers  相似文献   

4.
A novel hybrid containing graphene oxide (GO) and montmorillonite (MMT) was first synthesized by solution reaction. Then shape memory thermoplastic polyurethane (TPU) composites incorporating MMT–GO hybrid was fabricated via melt blending. Infrared spectra indicated that GO and MMT have been combined together through chemical hydrogen bonding. Tensile tests showed that MMT‐GO hybrids provided substantially greater mechanical property enhancement than using MMT or GO as filler alone. With only 0.25 wt % loading of MMT–GO hybrid (the mass ratio of MMT:GO is 1:1), there was a relatively high improvement in tensile properties of TPU composites, compared with those of TPU/GO and TPU/MMT composites at the same filler content. Thermal analysis indicated that MMT‐GO hybrids enhanced the thermal decomposition temperatures of TPU composites. Shape memory property tests showed that the shape fixing rate of TPU composites was effectively enhanced by incorporating MMT–GO hybrid. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46149.  相似文献   

5.
An efficient approach has been applied to assemble MgAl layered double hydroxide onto pristine carbon nanotubes using sodium dodecylsulfate. The assembling process and formation of such hybrid nanostructures were established using X‐ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy and high‐resolution transmission electron microscopy. Subsequently, the hybrid was used as nanofiller in the development of high‐performance thermoplastic polyurethane/acrylonitrile butadiene rubber (1:1 w/w) blend nanocomposites. Measurements of mechanical and dynamic mechanical properties show that tensile strength, elongation at break and storage modulus improve significantly by 171%, 1.8 times and 241% in a blend with 0.50 wt% loading of hybrid filler. Thermogravimetric analysis shows that the thermal stability of the blend with 0.50 wt% hybrid filler compared to neat material is maximally improved by 20 °C determined at 50% weight loss. Differential scanning calorimetry shows the maximum enhancement in melting temperature (7 °C) and crystallization temperature (31 °C) due to significant nucleation efficiency of the filler, homogeneous dispersion and strong interfacial interaction between polymer matrix and filler. © 2015 Society of Chemical Industry  相似文献   

6.
Fine powders of montmorillonite (MMT)/multiwalled carbon nanotube (MWCNT) hybrids have been prepared by simple grinding of MWCNT with MMT in different weight ratios of MMT to MWCNT (10 : 1, 6 : 1, 3 : 1, 1 : 1, and 1 : 3) and characterized by wide‐angle X‐ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. These studies have established the formation of the exfoliated structures of MMT/MWCNT (1 : 1) hybrid, in which MWCNTs exist in the state of single nanotubes that are adsorbed and intercalated on the surface and in between the MMT nanoplatelets. The hybrid has subsequently been used as reinforcing nanofiller in the development of high‐performance silicone rubber (SR) nanocomposites, and a remarkably synergistic effect of MMT and MWCNT on SR properties has been observed. The tensile strength of SR containing 1% w/w of the MMT/MWCNT (1 : 1) hybrid is improved by 215%, whereas the SR filled with MMT or MWCNT alone showed an improvement of 46 and 25%, respectively, over that of unfilled SR. In addition, SR/1 wt % MMT/MWCNT (1 : 1) nanocomposites also exhibit the maximum improvement in thermal stability corresponding to 10% weight loss by 70°C, crystallization and melting temperatures increased by 8 and 6°C as inferred from thermogravimetric analysis and differential scanning calorimetry, respectively. This approach is promising for the preparation of high‐performance SR nanocomposites by using different dimension nanofillers together. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41818.  相似文献   

7.
The main motivation of the present work was to fabricate novel multifunctional polymer‐based nanocomposites. The nanocomposites embedded with multi‐walled carbon nanotube‐boehmite (MWCNT‐boehmite) were prepared via hot pressure casting technique. The MWCNT coated with boehmite were synthesized by hydrothermal synthesis. Subsequently, as‐prepared MWCNT‐boehmite was added into the phthalonitrile‐terminated polyarylene ether nitriles (PEN‐t‐CN) matrix in order to benefit from the synergetic effect of MWCNT and boehmite. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) X‐ray diffraction (XRD), and Fourier transform infrared (FTIR) were employed to confirm the existence of MWCNT‐boehmite in our article. Furthermore, the structures, fracture morphologies, thermal, mechanical and dielectric properties of the nanocomposites were investigated, respectively. SEM images indicated that the MWCNT‐boehmite was homogeneously dispersed in the polymer, which acted as an essential factor to ensure good physical properties. The TGA analysis showed that the incorporation of MWCNT‐boehmite enhanced the thermal stability of the nanocomposites with initial degradation temperature (Tid) increasing from 458 to 492°C, while that of the pure PEN‐t‐CN was 439°C. The mechanical testing proved that significant enhancement of mechanical properties has been achieved. The tensile strength of PEN‐t‐CN/MWCNT‐boehmite composites with 3 wt% MWCNT‐boehmite reached the maximum (78.33 MPa), with a 41.7 % increase compared to the pure polymer. More importantly, the unique dielectric properties were systematically discussed and the results demonstrated that dielectric properties exhibited little dependency on frequency. For the incorporation of hybrid filler, the positive impact of MWCNT‐boehmite hybrid material resulted in polymer‐based nanocomposites with enhanced physical properties. POLYM. COMPOS., 36:2193–2202, 2015. © 2014 Society of Plastics Engineers  相似文献   

8.
A new synthetic route was applied to develop carbon nanofiber (CNF)–layered double hydroxide (LDH) hybrid through a noncovalent assembly using sodium dodecyl sulfate as bridging linker between magnesium–aluminum LDH and CNF and then characterized. Furthermore, this hybrid was used as nanofiller in thermoplastic polyurethane–acrylonitrile butadiene rubber (TN; 1:1 w/w) blend. Mechanical measurements showed that the 0.50 wt % hybrid loaded TN blend exhibited the maximum improvements in the elongation at break, tensile strength, and storage modulus of 1.51 times and 167 and 261% (25 °C), respectively. Differential scanning calorimetric analysis and thermogravimetric analysis showed maximum improvements in the melting temperature (5 °C), crystallization temperature (17 °C), and thermal stability (14 °C) in the 0.50 wt % surfactant modified carbon nanofiber–LDH loaded blend compared to the neat blend. Such enhancement in the properties of the TN nanocomposites could be attributed to the homogeneous dispersion, strong filler–blend interfacial interaction, and synergistic effect. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43470.  相似文献   

9.
The intercalated thermoplastic polyurethane (TPU)/montmorillonite (MMT) nanocomposites were prepared by melt blending TPU and organic octadecylammonium‐treated MMT (ODA‐MMT) at 150–155°C for 10 min. Compared with those of TPU/montmorillonite composites, the interface interaction and dispersion of TPU/ODA‐MMT nanocomposites were improved remarkably. The tensile strength and tear strength of the TPU/ODA‐MMT nanocomposites were higher than those of pure TPU, and the MMT platelets dispersed on the nanometer scale in TPU matrix had reinforce effect. Due to the “labyrinth” effect of the MMT platelets dispersed on the nanometer scale in the TPU matrix caused by the eximious barrier and strong interaction between the MMT platelets and TPU, the temperature of initial weight loss of the TPU/ODA‐MMT nanocomposites was higher than that of pure TPU and TPU/MMT composites in the second thermodegradation step. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

10.
Positive temperature coefficient to resistivity (PTCR) characteristics of polystyrene (PS)/Ni‐powder (40 wt%) composites in the presence of multiwall carbon nanotubes (MWCNTs) has been investigated with reference to PS/carbon black (CB) composites. The PS/CB (10 wt%) composites showed a sudden rise in resistivity (PTC trip) at ≈110°C, above the glass transition temperature (Tg) of PS (Tg ≈95°C). Interestingly, the PTC trip temperature of PS/Ni‐powder (40 wt%)/MWCNT (0.75 phr) composites appeared at ≈90°C (below Tg of PS), indicating better dimensional stability of the composites at PTC trip temperature. The PTC trip temperature of the composites below the Tg of matrix polymer (PS) has been explained in terms of higher coefficient of thermal expansion (CTE) value of PS than Ni that led to a disruption in continuous network structure of Ni even below the Tg of PS. The dielectric study of PS/Ni‐powder (40 wt%)/MWCNT (0.75 phr) composites indicated possible use of the PTC composites as dielectric material. Dynamic mechanical analysis (DMA) and thermogravimetric analysis studies revealed higher storage modulus and improved thermal stability of PS/Ni‐powder (40 wt%)/MWCNT (0.75 phr) composites than the PS/CB (10 wt%) composites. POLYM. COMPOS., 33:1977–1986, 2012. © 2012 Society of Plastics Engineers  相似文献   

11.
An interesting correlation between initial loading and nature of wrapping of regioregular poly(3‐hexylthiophene) (rrP3HT) on multiwalled carbon nanotube and their combined effect on dynamic‐ and thermomechanical properties in ternary system (thermoplastic polyurethane as matrix) is highlighted. Wrapping of rrP3HT on carbon nanotube (CNT) makes the hexyl side chains thermally nonequivalent and composites more stable. Dynamic‐ and thermomechanical analysis ascertained the miscibility (single Tg = ?40°C), large mechanical reinforcement, and improved storage modulus of nanocomposites in the presence of CNT compared to its blends. Two breaks at ~ ?100 and ~ ?40°C for TPU‐P3HT composites (PHs) and TPU‐P3HT‐MWCNT composites (PHCs) in the loss modulus vs. temperature plot indicates two different types of transitions in P3HT chains. Dimensional stability by expansion probe technique measures low coefficient of thermal expansion of PHCs compared to its blends. Softening property by penetration probe technique suggests that 2.5 wt % loading of P3HT exhibits lowest degree of penetration compared to other nanocomposites. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

12.
The objective of this research was to investigate thermal stability and dynamic mechanical behavior of Exfoliated graphite nanoplatelets (xGnP™)‐Linear Low‐Density Poly Ethylene (LLDPE) nanocomposites with different xGnP loading content. The xGnP‐LLDPE nanocomposites were fabricated by solution and melt mixing in various screw rotating systems such as co‐, counter‐, and modified‐corotating. The storage modulus (E′) of the composites at the starting point of −50°C increased as xGnP contents increased. E′ of the nanocomposite with only 7 wt% of xGnP was 2.5 times higher than that of the control LLDPE. Thermal expansion and the coefficient of thermal expansion of xGnP‐loaded composites were much lower than those of the control LLDPE in the range of 45–80°C (299.8 × 10−6/°C) and 85–100°C (365.3 × 10−6/°C). Thermal stability of the composites was also affected by xGnP dispersion in LLDPE matrix. The xGnP‐LLDPE nanocomposites by counter‐rotating screw system showed higher thermal stability than ones by co‐rotating and modified‐co‐rotating system at 5 wt% and 12 wt% of xGnP. xGnP had a great effect on high thermal stability of xGnP‐LLDPE composites to be applied as tube and film for electrical materials. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

13.
This study has reported the preparation of polycarbonate (PC)/graphene nanoplate (GNP)/multiwall carbon nanotube (MWCNT) hybrid composite by simple melt mixing method of PC with GNP and MWCNT at 330°C above the processing temperature of the PC (processing temperature is 280°C) followed by compression molding. Through optimizing the ratio of (GNP/MWCNT) in the composites, high electromagnetic interference shielding effectiveness (EMI SE) value (∼21.6 dB) was achieved at low (4 wt%) loading of (GNP/MWCNT) and electrical conductivity of ≈6.84 × 10−5 S.cm−1 was achieved at 0.3 wt% (GNP/MWCNT) loading with low percolation threshold (≈0.072 wt%). The high temperature melt mixing of PC with nanofillers lowers the melt viscosity of the PC that has helped for better dispersion of the GNPs and MWCNTs in the PC matrix and plays a key factor for achieving high EMI shielding value and high electrical conductivity with low percolation threshold than ever reported in PC/MWCNT or PC/graphene composites. With this method, the formation of continuous conducting interconnected GNP‐CNT‐GNP or CNT‐GNP‐CNT network structure in the matrix polymer and strong π–π interaction between the electron rich phenyl rings and oxygen atom of PC chain, GNP, and MWCNT could be possible throughout the composites. POLYM. COMPOS., 37:2058–2069, 2016. © 2015 Society of Plastics Engineers  相似文献   

14.
Low‐molecular‐weight copolymers of styrene and vinylbenzyl ammonium salts (oligomeric surfactant) were used to modify montmorillonite (MMT). The oligomeric‐modified MMT showed good thermal stability, which made it suitable to be used for preparing polycarbonate(PC)/MMT nanocomposites at high temperature. A different series of PC/MMT nanocomposites had been prepared by melt processing using a twin screw extruder. The effect of oligomeric surfactant structure and clay loading on the morphology, mechanical property, thermal stability, and color appearance of the nanocomposites were explored. The results of X‐ray diffraction and transmission electron microscopy analyses indicated that the PC/MMT nanocomposites had partially exfoliated structures. The PC/MMT nanocomposites were found to retain light colored, which was important for optical application. Compared to neat PC, the nanocomposites showed better properties of thermal stability and heat insulation. The mechanical properties of the nanocomposites are significantly enhanced by incorporating clay into the PC matrix. The tensile strength of nanocomposites with 2 wt% clay content was up to 55 MPa, which was much higher than that of the neat PC (37 MPa). The maximum tensile modulus value was 19% higher than that of neat PC. POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

15.
《Polymer Composites》2017,38(7):1319-1326
The effects of epoxy‐functionalized glass fiber (GF) on the electrical conductivity, crystallization behavior, thermal stability, and dynamic mechanical properties of polyoxymethylene (POM)/thermoplastic polyurethane (TPU)/multiwalled carbon nanotube (MWCNT) composites are investigated. The electrical resistivities of POM/5%−20% TPU/1% MWCNT composites are significantly reduced by nine orders of magnitude after the addition of 20% GF because of the formation of TPU‐coated GF structure facilitating the construction of conductive networks. GF has no obvious influence on the crystallization temperature, melting temperature, and degree of crystallinity of POM in POM/TPU/MWCNT composites because of their relatively bigger size compared with POM chains and MWCNTs. The storage moduli of POM/TPU/MWCNT composites are improved by the addition of GF, indicating that POM/TPU/MWCNT/GF composites are promising materials with good electrical and mechanical properties. POLYM. COMPOS., 38:1319–1326, 2017. © 2015 Society of Plastics Engineers  相似文献   

16.
Ester‐based thermoplastic polyurethane (TPU) nanocomposites were prepared by melt blending at 190°C, using 3 wt% Cloisite 10A (organically modified montmorillonite clay) as the nanoscale reinforcement [TPU(C10A)]. The nanocomposites were subsequently melt‐blended with polypropylene (PP) using maleic anhydride–grafted polypropylene (MA‐g‐PP) as a compatibilizer [in the ratio of 70/30‐TPU/PP, 70/25/5‐TPU/PP/MA‐g‐PP, 70/25/5‐TPU (C10A)/PP/MA‐g‐PP]. Besides giving substantial increase in modulus, tensile strength, and other properties, organoclay reinforcement functions as a surface modifier for TPU hard segment resulting in improved dispersion. The morphology and other characteristics of the nanocomposite blends were investigated in terms of X‐ray diffraction, fourier transform infrared spectroscopy, differential scanning calorimetry, dynamic mechanical analysis, tensile properties, scanning electron microscopy, and atomic force microscopy. The results indicate that the ester‐TPU(C10A)/PP/MA‐g‐PP exhibited better dispersion than other blend systems; abrasion resistance and water absorption resistance were also better for this system. POLYM. ENG. SCI., 50:1878–1886, 2010. © 2010 Society of Plastics Engineers  相似文献   

17.
Polymethylmethacrylate (PMMA) and functionalized multiwalled carbon nanotube (F‐MWCNT) based composite films were prepared using solution casting method. Nanoindentation and scratch measurements were carried out to study the influence of F‐MWCNT as the reinforcement on the mechanical properties of the composite at the sub‐micron scale. The composites were prepared with varying weight percentages of F‐MWCNT in the PMMA matrix. The composites containing an adequate amount (0.25 wt%) of F‐MWCNT was found to demonstrate the maximum nanomechanical properties, viz. hardness, elastic modulus, recovery index. Scratch resistance measured in terms of coefficient of friction, also showed maximum value for the PMMA composite reinforced with 0.25 wt% of F‐MWCNT. POLYM. COMPOS., 35:948–955, 2014. © 2013 Society of Plastics Engineers  相似文献   

18.
《Polymer Composites》2017,38(12):2874-2880
In this study, alkali and isocyanate surface modifications were applied to flax fiber (FF) to improve its adhesion to bio‐based thermoplastic polyurethane (TPU) matrix. In addition to these treatments, isocyanate treated FF was subjected to curing process. TPU/FF composites were prepared at a constant 30 wt% loading of the total by using melt‐blending method. Their mechanical properties, modulus of elasticity, melt‐flow, water uptake and morphological properties were investigated. All of the surface modifications resulted in better mechanical properties with respect to untreated FF. Cured isocyanate treated FF loaded composite exhibited the best results in the case of tensile strength, Young's modulus and storage modulus. Isocyanate treatments caused reduction in melt flow rate due to enhancement in interfacial interactions between phases. It was observed from the SEM micrographs that surface treated fibers dispersed more homogeneously in the TPU matrix. Results confirmed that surface modifications improved the adhesion of FF to TPU matrix. POLYM. COMPOS., 38:2874–2880, 2017. © 2015 Society of Plastics Engineers  相似文献   

19.
The poly(ethylene‐co‐vinylacetate)/montmorillonite (EVA/MMT) nanocomposites were prepared by directly melt blending EVA and natural MMT in the presence of hexadecyl trimethylammonium bromide. The interlayer spacing of the silicate layers in EVA/MMT nanocomposites increased within 15 min of the blending time, and then remained unchanged with further increase in the blending time. The tensile and tear strength and Young's modulus of EVA/MMT nanocomposites increased with increasing blending time and reached the maximum value at 15 min, and then decreased. The tensile and tear strength and Young's modulus of EVA/MMT nanocomposites blended at 140°C were lower than those of the nanocomposites blended at 120°C. The thermal stability of EVA/MMT nanocomposites was improved compared with EVA. Furthermore, the thermal stability of EVA/MMT nanocomposites in nitrogen was higher than thermal stability of the nanocomposites in air because of the air destabilized the EVA and speeded up both deacylation and degradation. POLYM. COMPOS., 27:529–532, 2006. © 2006 Society of Plastics Engineers  相似文献   

20.
Nanocomposite thin films of poly(lactic acid) (PLA) were produced incorporating small amounts (0.2 to 1 wt%) of graphene oxide (GO) and graphene nanoplatelets (GNP). The films were prepared by solvent‐casting. Mechanical properties were evaluated for plasticized (by residual solvent) and unplasticized films. Plasticized nanocomposite films presented yield strength and Young's modulus about 100% higher than those of pristine PLA. For unplasticized films improvements in tensile strength and Young's modulus were about 15 and 85%, respectively. For both film types, a maximum in mechanical performance was identified for about 0.4 wt% loadings of the two filler materials tested. Permeabilities towards oxygen and nitrogen decreased, respectively, three‐ and fourfold in films loaded with both GO or GNP. The glass transition temperature showed maximum increases, in relation to unloaded PLA films, of 5 °C for 0.4 wt% GO and 7 °C for 0.4 wt% GNP, coinciding with the observed maxima in mechanical properties. Copyright © 2012 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号