首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Microcellular foaming of poly(phenylene sulfide)/poly(ether sulfones) (PPS/PES) blends presents a promising approach to produce high‐performance cellular materials with tailored microstructures and enhanced properties. This study investigated the effects of multiphase blend composition and process conditions on the foaming behaviors and final cellular morphology, as well as the dynamic mechanical properties of the solid and microcellular foamed PPS/PES blends. The microcellular materials were prepared via a batch‐foam processing, using the environment‐friendly supercritical CO2 (scCO2) as a blowing agent. The saturation and desorption behaviors of CO2 in PPS/PES blends for various blend ratios (10 : 0, 8 : 2, 6 : 4, 5 : 5, 4 : 6, 2 : 8, and 0 : 10) were also elaborately discussed. The experimental results indicated that the foaming behaviors of PPS/PES blends are closely related to the blend morphology, crystallinity, and the mass‐transfer rate of the CO2 in each polymer phase. The mechanisms for the foaming behaviors of PPS/PES blends have been illustrated by establishing theoretical models. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42634.  相似文献   

2.
In this study, the effects of batch processing conditions (foaming time and temperature) and blend composition as well as the effect of incorporating wood fiber into the blends on the crystallinity, sorption behavior of CO2, void fraction, and cellular morphology of microcellular foamed high‐density polyethylene (HDPE)/polypropylene (PP) blends and their composites with wood fiber were studied. Blending decreased the crystallinity of HDPE and PP and facilitated microcellular foam production in blend materials. The void fraction was strongly dependent on the processing conditions and on blend composition. Foamed samples with a high void fraction were not always microcellular. The addition of wood fiber inhibited microcellular foaming. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2842–2850, 2003  相似文献   

3.
Intercalated and exfoliated polystyrene/nano‐clay composites were prepared by mechanical blending and in situ polymerization respectively. The composites were then foamed by using CO2 as the foaming agent in an extrusion foaming process. The resulting foam structure is compared with that of pure polystyrene and polystyrene/talc composite. At a screw rotation speed of 10 rpm and a die temperature of 200°C, the addition of a small amount (i.e., 5 wt%) of intercalated nano‐clay greatly reduces cell size from 25.3 to 11.1 μm and increases cell density from 2.7 × 107 to 2.8 × 108 cells/cm3. Once exfoliated, the nanocomposite exhibits the highest cell density (1.5 × 109 cells/cm3) and smallest cell size (4.9 μm) at the same particle concentration. Compared with polystyrene foams, the nanocomposite foams exhibit higher tensile modulus, improved fire retardance, and better barrier property. Combining nanocomposites and the extrusion foaming process provides a new technique for the design and control of cell structure in microcellular foams.  相似文献   

4.
In this study, we mainly investigate the solid‐state foaming of polyether ether ketone (PEEK) with different crystallinities using supercritical CO2 as a physical blowing agent. The gaseous mass‐transfer and thermophysical behaviors were studied. By altering the parameters of the foaming process, microcellular foams with different cell morphologies were prepared. The effect of crystallization on the cell morphology was also investigated in detail. The results indicate that the crystallization restricts gas diffusion in the material, and the thermophysical behaviors of the saturated PEEK sample with low crystallinity presents two cold crystallization peaks. The cell density decreases and the cell size increases as the saturation pressure increases. The cell density of the microcellular foams prepared under 20 MPa is 1.23 × 1010 cells/cm3, which is almost 10 times compares to that under 8 MPa. The cell size increases as the foaming time extends or the foaming temperature increases. It is interesting that the cell morphology with a bimodal cell‐size distribution is generated when the samples are foamed at temperatures higher than 320°C for a sufficient time. Additionally, nanocellular foams can be obtained from a highly crystallized PEEK after the decrystallization process. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42576.  相似文献   

5.
With maleic anhydride grafted polypropylene (PP‐g‐MAH) as a compatibilizer, composites of block‐copolymerized polypropylene (B‐PP)/nanoclay were prepared. The effects of the PP‐g‐MAH and nanoclay content on the crystallization and rheological properties of B‐PP were investigated. The microcellular foaming behavior of the B‐PP/nanoclay composite material was studied with a single‐screw extruder foaming system with supercritical (SC) carbon dioxide (CO2) as the foaming agent. The experimental results show that the addition of nanoclay and PP‐g‐MAH decreased the melt strength and complex viscosity of B‐PP. When 3 wt % SC CO2 was injected as the foaming agent for the extrusion foaming process, the introduction of nanoclay and PP‐g‐MAH significantly increased the expansion ratio of the obtained foamed samples as compared with that of the pure B‐PP matrix, lowered the die pressure, and increased the cell population density of the foamed samples to some extent. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44094.  相似文献   

6.
Wood-fiber composites make use of cellulose fibers as a reinforcing filler in the polymer matrix and are known to have a lower material cost and a higher stiffness than neat polymers. However, the lower material cost and enhanced stiffness of wood-fiber composites are achieved at the expense of other properties such as the ductility and impact strength. Since microcellular plastics exhibit a higher impact strength, higher toughness, and increased fatigue life compared to unfoamed plastics, microcellular foaming of wood-fiber composites will improve the mechanical properties of the composites and therefore increase the usefulness of the materials. In this paper, microcellular foamed PVC/wood-fiber composites with unique cell morphology and material composition are characterized. Microcellular structures are produced in PVC/wood-fiber composites by first saturating the composite samples with CO2 under high pressure followed by rapidly decreasing the solubility of gas in the samples. The void fraction of the microcellular foamed PVC/wood-fiber composites is controlled by tailoring the composition of materials and the foaming process parameters. The results indicate that tensile and impact properties of microcellular foamed PVC/wood-fiber composites are most sensitive to changes in the cell morphology and the surface modification of fibers.  相似文献   

7.
Controlling sandwich‐structure of poly(ethylene terephthalate) (PET) microcellular foams using coupling of CO2 diffusion and CO2‐induced crystallization is presented in this article. The intrinsic kinetics of CO2‐induced crystallization of amorphous PET at 25°C and different CO2 pressures were detected using in situ high‐pressure Fourier transform infrared spectroscopy and correlated by Avrami equation. Sorption of CO2 in PET was measured using magnetic suspension balance and the diffusivity determined by Fick's second law. A model coupling CO2 diffusion in and CO2‐induced crystallization of PET was proposed to calculate the CO2 concentration as well as crystallinity distributions in PET sheet at different saturation times. It was revealed that a sandwich crystallization structure could be built in PET sheet, based on which a solid‐state foaming process was used to manipulate the sandwich‐structure of PET microcellular foams with two microcellular or even ultra‐microcellular foamed crystalline layers outside and a microcellular foamed amorphous layer inside. © 2011 American Institute of Chemical Engineers AIChE J, 58: 2512–2523, 2012  相似文献   

8.
In this article, the foaming behavior of isotactic polypropylene (iPP) and its composites with spherical or fibrous poly(butylenes terephthalate) (PBT) using supercritical CO2 as a blowing agent were investigated. Their foaming performances were also compared in relation to the crystal morphology and rheological behavior of PP. Results demonstrate that crystal structures significantly impacted the cell structures of foams. At relatively low temperature, microcells appeared at the centers of PP spherulites where the melting started. Particularly, bi‐modal cell structure formed in the foamed PP with increasing temperature. However, in the foamed PP composites with spherical or fibrous PBT, this structure almost disappeared due to the smaller PP spherulites. In foaming PP/PBT composites, the heterogeneous nucleation of spherical or fibrous PBT was effective at reducing cell size as well as improving cell density and cell uniformity. The fibrous PBT also acted as scaffolds for preserving cell shapes. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41801.  相似文献   

9.
将经过改性的玻璃纤维(GF)以不同的含量加入到聚丙烯(PP)中,在二次开模条件下制备微发泡PP/GF复合材料,分析了不同含量GF对微发泡PP复合材料力学性能的影响。结果表明,GF具有明显的填充增强作用,当GF质量分数为20%时,微发泡PP复合材料的拉伸强度达到50.24 MPa,比未发泡纯PP的提高了59.5%;微发泡材料的冲击强度为7.37kJ/m2,发泡后材料的冲击强度与纯PP的相比提高了93.9%;发泡后材料密度相对于未发泡的显著下降。  相似文献   

10.
The effects of process variables on the microcellular structure and crystallization of foamed polypropylene (PP) with supercritical CO2 as the foaming agent were investigated in this article. The cell size increased and the cell density reduced with increased foaming temperature. Differently, both the cell diameter and cell density increased as saturation pressure increased. DSC curves showed that the melting peak was broadened when supercritical CO2 foaming PP. Furthermore, the width at half-height of the melting peak increased, the melting peak moved to higher temperature, and the melting point and crystallinity enhanced as the foaming temperature lowered and the saturation pressure enhanced.  相似文献   

11.
Wood fiber reinforced polymer composites represent a relatively small but rapidly growing material class, extensively applied in interior building applications and in the automotive industry. The polymer‐wood fiber composites utilize fibers as reinforcing filler in the polymer matrix and are known to be advantageous over the neat polymers in terms of the materials cost and mechanical properties such as stiffness and strength. Wood fiber reinforced polymer composites are microcellularly processed to create a new class of materials with unique properties. Most manufacturers are evaluating new alternatives of foamed composites that are lighter and more like wood. Foamed wood composites accept screws and nails like wood, more so than their non‐foamed counterparts. They have other advantages such as better surface definition and sharper contours and corners than non‐foamed profiles, which are created by the internal pressure of foaming. This paper represents a review on microcellular wood fiber reinforced polymer composites obtained by different processes (batch, injection molding, extrusion, and compression molding process) and includes an overview of foaming agents (physical and chemical) and the foaming of wood fiber‐polymer composites (changes in phase morphology, formation of polymer‐gas solution, cell nucleation, and cell growth control).

  相似文献   


12.
刘何琳  张纯  刘卫  龚维 《塑料科技》2013,41(5):57-60
以化学发泡注塑成型技术为主线,在二次开模条件下制备微发泡低密度聚乙烯(LDPE)复合材料;通过材料的本征特性分析了弹性体对微发泡LDPE复合材料发泡行为的影响规律。结果表明:LDPE中,弹性体含量为15%时,发泡质量较为理想,泡孔呈规则的圆形,泡孔直径和泡孔密度分别为35.32μm、8.217×106个/cm3;弹性体含量低于和高于15%时,发泡质量较差,不适合于LDPE复合材料的发泡。  相似文献   

13.
In this research, the effects of the materials and the processing conditions on the cell morphology of foamed PVC/wood-fiber composites were studied with a view to establishing their process-structure relationships. Each step of microcellular PVC/wood-fiber composites processing is addressed, including the surface treatment of the wood-fiber, mixing of polymer and wood-fiber, manufacture of the composites, the saturation of the composites with gas, microcellular foaming of the composites, and characterization of the cell morphology. The cellular morphologies of the foamed PVC/wood-fiber composites are a strong function of the content of plasticizer and the surface treatment of wood-fiber as well as the gas saturation and foaming conditions.  相似文献   

14.
N2‐filled hollow glass beads (HGB) were first used as novel gas carriers to prepare microcellular polymers by compression molding. Dicumyl peroxide was acted as crosslink agent to control the produced microcellular structure of low density polyethylene (LDPE)/HGB. The effect of temperature, pressure and the content of gel on the embryo‐foaming, and final‐foaming structure are investigated. Scanning electronic microscopy shows that the average cell size of microcellular LDPE ranges from 0.1 to 10 μm, and the foam density is about 109–1011 cells/cm3. A clear correlation is established between preserving desirable micromorphologies of microcellular LDPE in different processing stage and tuning processing factors. The pertinent foaming mechanism of microcellular materials foamed with HGB is proposed. Because of the good mechanical strength, low density, weak water‐absorption, and excellent heat insulate ability, microcellular LDPE has great potential application in energy building materials. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
Microcellular foamed (wood fiber)‐reinforced recycled polypropylene composites (MFWPCs) were prepared by an injection molding process where azodicarbonamide was used as a chemical foaming agent. The influence of injection parameters (injection temperature, dwell pressure) on the microcellular structure (cell diameter and cell density) and the mechanical properties of the MFWPCs were investigated. The results indicated that when the melting temperature was 180°C and the dwell pressure was 12.5 MPa, a uniformly distributed microcellular structure of MFWPCs was obtained. Compared with solid wood plastic composites, the density of the MFWPCs decreased by 24.5%, and its impact strength of MFWPCs increased by 53%, because the propagation direction of the crack changed to the “skip” or “bifurcation” mechanism as a result of the microcellular structure, and the surrounding matrix of this structure made it easy to produce forced high‐elastic deformation. The toughening mechanism of the microcellular structure was analyzed. J. VINYL ADDIT. TECHNOL., 2012. © 2012 Society of Plastics Engineers  相似文献   

16.
Epoxy resins (bisphenol A type epoxy resins/2‐ethyl‐4‐methylimidazole) consisting of oligomers with different molecular weights were foamed using a temperature‐quench physical foaming method with CO2. The resulting cell morphologies could be classified into four types: non‐foamed structure, cracked structure, star‐shaped structure, and sphere‐shaped structure. The effects of the gel fraction and molecular weight between crosslinks (MC) on the cell morphology were investigated for the preparation of microcellular epoxy foams. MC was calculated by measuring the plateau rubber modulus of the rheological properties and the weight uptake of acetone. By varying the molecular weight of the epoxy oligomers and the cure time, the MC of the epoxy was controlled to modulate the cell morphology. The experiments elucidated the threshold MC value that permits CO2‐bubble nucleation: CO2‐bubble nucleation in the epoxy resin could be induced when the distance between the crosslinking points exceeded the critical size of bubble nucleus. Based on this information, the microcellular epoxy foam was prepared by maintaining MC above 104g mol−1 and the complex modulus above 6 × 108 Pa. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40407.  相似文献   

17.
The process parameters for production of solid‐state microcellular polycarbonate using subcritical CO2 were explored. Sufficiently long foaming times were used to produce foams, where cell growth had completed, resulting in steady‐state structures. A wide range of foaming temperatures and saturation pressures below the critical pressure of CO2 were investigated, establishing the steady state process space for this polymer–gas system. Processing conditions are presented that produce polycarbonate foams where both the foam density and the average cell size can be controlled. The process space showed that we could produce foams at a constant density, while varying the cell size by and order of magnitude. At a relative density of 0.5, the average cell size could be varied from 4 to 40 μm. The ability to produce such a family of foams opens the possibility to explore the effect of microstructure, like cell size on the properties of cellular materials. It was found that the minimum foaming temperature for a given concentration of CO2, determined from the process space, agrees well with the predicted glass transition temperature of the gas–polymer solution. A characterization of the average cell size, cell size distribution, and cell nucleation density for this system is also reported. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers  相似文献   

18.
In this article, PA6/poly(tetrafluoroethylene) (PTFE) composites were prepared by internal mixer with high rotor speed. The existence of PTFE nano-fibrillation network structure was observed by scanning electron microscopy (SEM) analysis. The effect of PTFE on crystallization and rheological behavior of PA6 was evaluated. The result showed that the PTFE fibrils improved the crystallization properties of PA6 and do not change the crystal structure. The PTFE effectively enhanced the melt strength of PA6 by fibrillation. The PA6/PTFE composites were then foamed assisted by supercritical CO2. The PTFE was used as cell nucleating agent, crystal nucleating agent and melt strength enhancement agent in the foaming process. Finally, the microcellular PA6 foams were successfully obtained with the cell density higher than 109 cells/cm3, the cell size of ca. 14 μm and the volume expansion ratio of 16.  相似文献   

19.
微孔发泡聚乳酸/木纤维复合材料的泡孔结构   总被引:2,自引:1,他引:1       下载免费PDF全文
李少军  黄汉雄  许琳琼 《化工学报》2013,64(11):4262-4268
引言聚乳酸(PLA)因具有环境友好性和降解性而被用于制备不同泡孔结构的泡沫制品[1],然而PLA呈现低的熔体强度和窄的加工窗口,这不利于以超临界流体(如超临界二氧化碳Sc-CO2)发泡制备微孔PLA材料[2-3]。加入填料(如二氧化硅[4]、羟基磷灰石[5]和蒙脱土[6]等)可改善PLA  相似文献   

20.
A novel method of producing injection molded parts with a foamed structure has been developed. It has been named supercritical fluid‐laden pellet injection molding foaming technology (SIFT). Compared with conventional microcellular foaming technologies, it lowers equipment costs without sacrificing the production rate, making it a good candidate for mass producing foamed injection molded parts. Both N2 and CO2 can be suitably used in this process as the physical blowing agent. However, due to their distinct physical properties, it is necessary to understand the influence of their differences over the process and the outcomes. Comparisons were made in this study between using CO2 and N2 as the blowing agents in terms of the part morphologies, as well as the shelf life and gas desorption process of the gas‐laden pellets. After gaining a good understanding of the SIFT process and the gas‐laden pellets, a novel foam injection molding approach combining the SIFT process with microcellular injection molding was proposed in this study. Both N2 and CO2 can be introduced into the same foaming process as the coblowing agents in a two‐step manner. Using an optimal content ratio for the blowing agents, as well as the proper sequence of introducing the gases, foamed parts with a much better morphology can be produced by taking advantage of the benefits of both blowing agents. In this study, the theoretical background is discussed and experimental results show that this combined approach leads to significant improvements in foam cell morphology for low density polyethylene, polypropylene, and high impact polystyrene using two different mold geometries. POLYM. ENG. SCI., 54:899–913, 2014. © 2013 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号