首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we prepared short‐carbon‐fiber (CF)‐reinforced poly(lactic acid) (PLA)–thermoplastic polyurethane (TPU) blends by melt blending. The effects of the initial fiber length and content on the morphologies and thermal, rheological, and mechanical properties of the composites were systematically investigated. We found that the mechanical properties of the composites were almost unaffected by the fiber initial length. However, with increasing fiber content, the stiffness and toughness values of the blends were both enhanced because of the formation of a TPU‐mediated CF network. With the incorporation of 20 wt % CFs into the PLA–TPU blends, the tensile strength was increased by 70.7%, the flexural modulus was increased by 184%, and the impact strength was increased by 50.4%. Compared with that of the neat PLA, the impact strength of the CF‐reinforced composites increased up to 1.92 times. For the performance in three‐dimensional printing, excellent mechanical properties and a good‐quality appearance were simultaneously obtained when we printed the composites with a thin layer thickness. Our results provide insight into the relationship among the CFs, phase structure, and performance, as we achieved a good stiffness–toughness balance in the PLA–TPU–CF ternary composites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46483.  相似文献   

2.
The natural fiber reinforced biodegradable polymer composites were prepared with short jute fiber as reinforcement in PLA (Poly lactic acid) matrix. The short jute fiber is successively treated with NaOH at various concentrations (5%, 10%, and 15%) and H2O2. The composites were prepared with untreated and treated short jute fibers at different weight proportions (up to 25%) in PLA and investigated for mechanical properties. The results showed that the composite with successive alkali treated jute fiber at 10% NaOH and H2O2 with 20% fiber loading has shown 18% higher flexural strength than neat PLA and untreated jute/PLA composite. The flexural modulus of the composite at 25% fiber loading was 125% and 110% higher than that of composites with untreated fibers and neat PLA, respectively. The impact strength of composite with untreated fibers at higher fiber weight fraction was 23% high as compared to neat PLA and 26% high compared to composite with treated fibers. The water absorption was more for untreated jute/PLA composite at 25% fiber loading than all other composites. The composite with untreated fibers has high thermal degradation compared with treated fibers but lower than that of pure PLA matrix. The enzymatic environment has increased the rate of degradation of composites as compared to soil burial. Surface morphology of biodegraded surfaces of the composites were studied using SEM method. POLYM. COMPOS., 37:2160–2170, 2016. © 2015 Society of Plastics Engineers  相似文献   

3.
High temperature processing thermoplastic polymers, polyetheretherketone (PEEK) and polyethersulphone (PES), were melt blended with carbon fibers (CFs) to make composites. These composites were investigated for their mechanical, thermal, and electrical properties. Mechanical properties that are expressed in terms of storage modulus, loss, and damping were enhanced with the addition of CFs. Thermal properties were determined by DSC and TGA. These methods help to understand the effects of fiber content and fiber–matrix adhesion in the composites. Composites were also tested for their electrical and thermal conductivity because CFs leave the composites thermally and electrically conductive. CFs enhanced the crystallinity of the PEEK appreciably that in turn influenced thermal conductivity, electrical resistivity, and the stiffness of PEEK/CF (composites of PEEK with CFs). PES/CF (composites of PES with CF) shows a different behavior due to the amorphous nature of PES. The work involves one filler and two different matrices, and so it provides an interesting comparison of how matrix morphology can influence the properties of composites. POLYM. COMPOS. 28:785–796, 2007. © 2007 Society of Plastics Engineers.  相似文献   

4.
The flax and equivalent proportion of poly(l ‐lactic acid)/poly(d ‐lactic acid) (PLLA/PDLA) were melt compounded and injection molded to prepare flax‐reinforced polylactide stereocomplex (sc‐PLA) bio‐composite, and the effect of alkali treatment on the structure and properties of flax as well as the flax/sc‐PLA composite was investigated. SEM and FTIR results showed hemicellulose in flax was almost completely removed after alkali treatment and the treated flax (ALK‐flax) bundles were more separated with a cleaner surface than untreated flax (UN‐flax). DSC results showed homo‐crystallites (hc, Tm = 160–170°C) and stereocomplex crystallites (sc, Tm ~210°C) coexisted in sc‐PLA and flax/sc‐PLA composites. Compared with sc‐PLA, the total crystallinity and sc‐crystallinity of flax/sc‐PLA composite increased regardless of whether the flax were treated with alkali, whereas ALK‐flax/sc‐PLA composite showed a little higher crystallinity than UN‐flax/sc‐PLA composite. TGA results confirmed ALK‐flax/sc‐PLA composite had a higher thermal degradation temperature than UN‐flax/sc‐PLA composite. The mechanical tests indicated although the mechanical properties of sc‐PLA increased significantly by reinforcing with flax, the ALK‐flax/sc‐PLA composite showed little lower mechanical properties than UN‐flax/sc‐PLA composite. The alkali treatment of flax had no obvious influence on the Vicat softening temperature (VST) of flax/sc‐PLA composites, a higher heat resistance with VST at ~155°C could be obtained for flax/sc‐PLA composite. POLYM. ENG. SCI., 55:2553–2558, 2015. © 2015 Society of Plastics Engineers  相似文献   

5.
Carbon fiber (CF) reinforced matrix composites have been applied widely, however, the interfacial adhesion of composites is weak due to smooth and chemically inert of CF surface. To solve this problem, A polydopamine/nano-silica (PDA-SiO2) interfacial layer on carbon fiber surface was constructed via polydopamine and nano- SiO2 (CF-PDA-SiO2) by a facile and effective method to reinforce polyamide 6 composites (CFs/PA6). The effects of PDA-SiO2 interfacial layer on crystallization structure and behavior, thermal properties, and mechanical properties of CFs/PA6 composites were investigated. Furthermore, interfacial reinforcement mechanism of composites has been discussed. This interfacial layer greatly increased the number of active groups of CF surface and its wettability obviously. The tensile strength of CF-PDA-SiO2/PA6 composites increased by 28.09%, 19.37%, and 26.22% compared to untreated-CF/PA6, CF-PDA/PA6, and CF-SiO2/PA6 composites, respectively, which might be caused by the increased interfacial adhesion between CF and PA6 matrix. The thermal stability, crystallization temperature, crystallinity, and glass transition temperature (Tg) of CF-PDA-SiO2/PA6 composites improved correspondingly, attributing to the heterogeneous nucleation of nano-SiO2 in the crystalline area and hydrogen bonds with molecular chains of PA6 in the amorphous area. This work provides a novel strategy for the construction of interfaces suitable for advanced CF composites with different structures.  相似文献   

6.
An environmentally friendly bleached extruder chemi‐mechanical pulp fiber or wood flour was melt compounded with poly(lactic acid) (PLA) into a biocomposite and hot compression molded. The mechanical, thermal, and rheological properties were determined. The chemical composition, scanning electron microscopy, and Fourier transform infrared spectroscopy results showed that the hemicellulose in the pulp fiber raw material was almost completely removed after the pulp treatment. The mechanical tests indicated that the pulp fiber increased the tensile and flexural moduli and decreased the tensile, flexural, and impact strengths of the biocomposites. However, pulp fiber strongly reinforced the PLA matrix because the mechanical properties of pulp fiber‐PLA composites (especially the tensile and flexural strengths) were better than those of wood flour‐PLA composites. Differential scanning calorimetry analysis confirmed that both pulp fiber and wood flour accelerated the cold crystallization rate and increased the degree of crystallinity of PLA, and that this effect was greater with 40% pulp fiber. The addition of pulp fiber and wood flour modified the rheological behavior because the composite viscosity increased in the presence of fibers and decreased as the test frequency increased. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44241.  相似文献   

7.
Injection molded poly(trimethylene terephthalate) (PTT)/carbon fiber (CF) composites have been fabricated using a twin screw micro compounder. The effect of CF reinforcement on the thermal, mechanical, dynamic mechanical, and microscopic properties of the composite was investigated. Addition of 30 wt% of CF into PTT resulted in the significant enhancement of tensile (120%) and flexural (30%) strength compared to neat PTT. The rule of mixture was successfully employed for theoretical calculations of tensile modulus and the calculated values were compared with the experimental results. Similarly, CF reinforced (30 wt%) PTT composites exhibited an increase of more than a 150°C in the heat deflection temperature. Scanning electron microscopy analysis of the tensile fracture specimens revealed uniform distribution of the CFs with good polymer matrix and fiber adhesion. Overall, the results obtained indicate the enhancement of properties with increasing fiber content, confirming better fiber and polymer matrix compatibility. POLYM. COMPOS., 33:1933–1940, 2012. © 2012 Society of Plastics Engineers  相似文献   

8.
Ramie fiber-reinforced polylactic acid (PLA) composites were successfully prepared by hot compression molding. Different treatment techniques were used to modify the surface of ramie fiber. The influence of diammonium phosphate (DAP) on the interfacial adhesion between ramie fiber and PLA composites was investigated by the contact angle measurements, FTIR and SEM analyses. The contact angle measurement results showed that alkali treatment combined with DAP was very efficient in decreasing the hydrophilicity of fibers. After treatment, the hydrophilicity of untreated ramie fiber from 5.9 ± 1.3 decreased to 2.0 ± 0.8 mJ/m2. The wettability of alkali/silane/DAP-treated ramie fiber/PLA composite was higher (95.4° ± 1.3°) than that of pure ramie fiber/PLA composite (87.3° ± 1.9°). The FTIR results were consistent with the wetting measurements as the increment of hydrophilicity. Thermal analysis indicated that DAP-modified ramie fiber/PLA composites exhibited a lower thermal decomposition temperature, unique decomposition behavior and more residual char formation at decomposition temperature. The tensile, flexural and impact properties of DAP-modified ramie fiber composites were comparable to those of untreated ramie fiber composite. Moreover, proper alignment and uniform distribution of ramie fibers within the PLA matrix were found to be excellent. The morphological structures observed by SEM showed that well-modified ramie fibers enhanced the failure of the PLA composites in tensile, flexural and impact tests.  相似文献   

9.
采用注塑成型法制备了生物降解黄麻短纤维增强PLA复合材料,通过力学性能测试及SEM,探讨了碱处理、碱和硅烷偶联剂KH550同时处理对复合材料结构和性能的影响。结果表明:两种处理方法均能够增加黄麻纤维的表面粗糙度,但碱和偶联剂KH550同时处理的效果要优于碱处理,且KH550改善了黄麻短纤维与PLA树脂之间的界面黏结性能提,高了黄麻/PLA复合材料的拉伸强度和弯曲强度。  相似文献   

10.
Industrial hemp fibers were treated with a 5 wt % NaOH, 2 wt % Na2SO3 solution at 120°C for 60 min to remove noncellulosic fiber components. Analysis of fibers by lignin analysis, scanning electron microscopy (SEM), zeta potential, Fourier transform infrared (FTIR) spectroscopy, wide angle X‐ray diffraction (WAXRD) and differential thermal/thermogravimetric analysis (DTA/TGA), supported that alkali treatment had (i) removed lignin, (ii) separated fibers from their fiber bundles, (iii) exposed cellulose hydroxyl groups, (iv) made the fiber surface cleaner, and (v) enhanced thermal stability of the fibers by increasing cellulose crystallinity through better packing of cellulose chains. Untreated and alkali treated short (random and aligned) and long (aligned) hemp fiber/epoxy composites were produced with fiber contents between 40 and 65 wt %. Although alkali treatment generally improved composite strength, better strength at high fiber contents for long fiber composites was achieved with untreated fiber, which appeared to be due to less fiber/fiber contact between alkali treated fibers. Composites with 65 wt % untreated, long aligned fiber were the strongest with a tensile strength (TS) of 165 MPa, Young's modulus (YM) of 17 GPa, flexural strength of 180 MPa, flexural modulus of 9 GPa, impact energy (IE) of 14.5 kJ/m2, and fracture toughness (KIc) of 5 MPa m1/2. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
通过挤出共混、造粒、注射成型的方式制备了黄麻纤维填充聚乳酸(PLA)复合材料,研究了复合材料的力学性能以及黄麻与PLA之间的微观界面形貌。结果表明:黄麻的加入,并没有很好地改善黄麻/PLA复合材料的拉伸强度和弯曲强度;碱处理后的黄麻与PLA之间的界面性能有所改善;碱处理黄麻的加入,改善了黄麻/PLA复合材料的断裂伸长率与冲击韧性。  相似文献   

12.
In the present study, the mechanical and thermal properties of sisal fiber‐reinforced unsaturated polyester (UP)‐toughened epoxy composites were investigated. The sisal fibers were chemically treated with alkali (NaOH) and silane solutions in order to improve the interfacial interaction between fibers and matrix. The chemical composition of resins and fibers was identified by using Fourier‐transform infrared spectroscopy. The UP‐toughened epoxy blends were obtained by mixing UP (5, 10, and 15 wt%) into the epoxy resin. The fiber‐reinforced composites were prepared by incorporating sisal fibers (10, 20, and 30 wt%) within the optimized UP‐toughened epoxy blend. Scanning electron microscopy was used to analyze the morphological changes of the fibers and the adhesion between the fibers and the UP‐toughened epoxy system. The results showed that the tensile and flexural strength of (alkali‐silane)‐treated fiber (30 wt%) ‐reinforced composites increased by 83% and 55%, respectively, as compared with that of UP‐toughened epoxy blend. Moreover, thermogravimetric analysis revealed that the (alkali‐silane)‐treated fiber and its composite exhibited higher thermal stability than the untreated and alkali‐treated fiber systems. An increase in storage modulus and glass transition temperature was observed for the UP‐toughened epoxy matrix on reinforcement with treated fibers. The water uptake behavior of both alkali and alkali‐silane‐treated fiber‐reinforced composites is found to be less as compared with the untreated fiber‐reinforced composite. J. VINYL ADDIT. TECHNOL., 23:188–199, 2017. © 2015 Society of Plastics Engineers  相似文献   

13.
This article aims to study the effect of the sizing materials type on the mechanical, thermal, and morphological properties of carbon fiber (CF)‐reinforced polyamide 6,6 (PA 6,6) composites. For this purpose, unsized CF and sized CFs were used. Thermogravimetric analysis was performed, and it has been found that certain amounts of polyurethane (PU) and PA sizing agents decompose during processing. The effects of sizing agent type on the mechanical and thermomechanical properties of all the composites were investigated using tensile, Izod impact strength test, and dynamic mechanical analysis. Tensile strength values of sized CF‐reinforced composites were higher than that of unsized CF‐reinforced composites. PA and polyurethane sized CF‐reinforced composites exhibited the highest impact strength values among the other sized CF‐reinforced composites. PU and PA sized CF‐reinforced composites denoted higher storage modulus and better interfacial adhesion values among the other sizing materials. Scanning electron microscope studies indicated that CFs which were sized with PU and PA have better interfacial bonding with PA 6,6 matrix among the sized CFs. All the results confirmed that PA and PU were suitable for CF's sizing materials to be used for PA 6,6 matrix. POLYM. COMPOS., 34:1583–1590, 2013. © 2013 Society of Plastics Engineers  相似文献   

14.
Hyperbranched aromatic polyamide (HBP) was grafted successfully onto carbon fibers (CFs) on the basis of solution polymerization to enhance the interfacial adhesion strength of CF-reinforced epoxy resin composites. The microstructure and interfacial properties of the CFs before and after decoration were researched. The results indicate that HBP was deposited uniformly onto the CFs with γ-aminopropyl triethoxysilane as the bridging agent. The active groups, roughness, and surface energy of the modified fiber [hyperbranched aromatic polyamide grafted carbon fiber (CF–HBP)] increased visibly in comparison with those of the untreated CFs. The CF–HBP composites revealed simultaneous remarkable enhancements (65.3, 34.3, and 84.8%) in their interfacial shear strength, flexural strength, and modulus, respectively; this was attributed to the improvement in the fiber–epoxy interface through enhanced chemical interactions, mechanical interlocking, and wettability. These agreed with the scanning electron microscopy observations from the fracture surface morphologies of the composites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47232.  相似文献   

15.
A novel process has been developed to manufacture poly(methyl methacrylate) (PMMA) pultruded parts. The mechanical and dynamic mechanical properties, environmental effects, postformability of pultruded composites and properties of various fiber (glass, carbon and Kevlar 49 aramid fiber) reinforced PMMA composites have been studied. Results show that the mechanical and thermal properties (i.e. tensile strength, flexural strength and modulus, impact strength and HDT) increase with fiber content. Kevlar fiber/PMMA composites possess the highest impact strength and HDT, while carbon fiber/PMMA composites show the highest tensile strength, tensile and flexural modulus, and glass fiber/PMMA composites show the highest flexural strength. Experimental tensile strengths of all composites except carbon fiber/PMMA composites follow the rule of mixtures. The deviation of carbon fiber/PMMA composite is due to the fiber breakage during processing. Pultruded glass fiber reinforced PMMA composites exhibit good weather resistance. They can be postformed by thermoforming, and mechanical properties can be improved by postforming. The dynamic shear storage modulus (G′) of pultruded glass fiber reinforced PMMA composites increased with decreasing pulling rate, and G′ was higher than that of pultruded Nylon 6 and polyester composites.  相似文献   

16.
In the present study, randomly aligned jute fiber/poly(lactic acid) (PLA) and two-directionally aligned jute fabric/PLA green composites with jute (50% by weight) treated with electron beam at different dosages (0, 5, 10, 30, 50, and 100?kGy) were fabricated by compression molding technique and the effect of electron beam treatment on their thermal properties was investigated in terms of thermal expansion, thermal stability, dynamic mechanical thermal property, and heat deflection temperature (HDT). The dynamic storage modulus and HDT of neat PLA were significantly increased by incorporating jute fibers or fabrics into PLA, whereas the coefficient of thermal expansion (CTE) and the damping property were decreased, reflecting the enhancement in the interfacial adhesion between the jute and the PLA by electron beam treatment with an optimal dosage of 10?kGy and the reinforcing effect by jute. The result exhibited that the thermal stability, storage modulus, and HDT of jute/PLA green composites were highest with the electron beam irradiation of jute at 10?kGy and lowest at 100?kGy, whereas the CTE and tan δ were lowest at 10?kGy and highest at 100?kGy. The thermal behavior of random jute/PLA green composites shows a similar tendency to that of 2D jute/PLA counterparts and the influence of electron beam irradiation on the thermal properties studied was consistent with each other. The thermomechanical analysis, dynamic mechanical thermal analysis, thermogravimetric analysis, and HDT results were in agreement with each other, showing a comparable effect of electron beam irradiation on composites thermal characteristics.  相似文献   

17.
Cellulose fiber‐reinforced phenolic composites were prepared and characterized by mechanical tests and morphological analysis in this study. First, preparation of the phenolic matrix was optimized using an experimental design. The variables studied were curing temperature and time. The responses measured were strength, elongation, modulus, and strain energy density, in tensile and flexural tests. After fixing the optimal curing conditions of the matrix at 75°C and 2.75 h, the effect of a latest drying stage was studied. Strengths in tensile and flexural tests of the matrix after the incorporation of the drying stage were 156 and 189% of the strengths of the undried matrix, and elastic moduli were three‐fold. Finally, cellulose fibers were incorporated as reinforcement. Alkali treatment of the fibers (1 and 5% NaOH), employment of silanes as coupling agents [(3‐aminopropyl) trimethoxysilane (APS) and 3‐(2‐aminoethylamino) propyltrimethoxysilane (AAPS)], and combined treatments alkali‐silane were tested. The AAPS silane treated cellulose fiber‐reinforced phenolic composite was the material with the best mechanical performance and adhesion fiber–matrix. The most significant improvements obtained with the AAPS silane treatment of the fibers were 25, 52, and 110% for tensile strength, elongation, and SED, respectively, in relation to the unreinforced material properties. POLYM. ENG. SCI., 54:2228–2238, 2014. © 2013 Society of Plastics Engineers  相似文献   

18.
The aim of this study was to improve the mechanical properties of an acrylonitrile–styrene–acrylate copolymer (ASA) with the help of carbon fibers (CFs). Additionally, the effects of the CFs on the morphology, rheological properties, dynamical mechanical properties, electrical resistivity, and heat resistance of the ASA composites were studied with scanning electron microscopy, rotational rheometry, and dynamic thermomechanical analysis (DMA). The mechanical properties of the ASA composites were enhanced largely by the CFs. The maximum tensile strength of the ASA/CF composites reached 107.2 MPa. The flexural strength and flexural modulus also reached 162.7 MPa and 12.4 GPa, respectively. These findings were better than those of neat ASA; this was attributed to the excellent interfacial adhesion between the CFs and ASA resin. Rheological experiments proved that the viscosity and storage modulus (G′) values of the ASA/CF composites did not increase until the CF content reached 20%. The DMA outcomes confirmed that the glass‐transition temperature of the ASA composites was elevated from 120.6 to 125°C. Importantly, the G′ values of the composites with 20 and 30% CFs showed a large increase during heating. In addition, the ASA/CF composites exhibited excellent conductivity and heat resistance. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43252.  相似文献   

19.
This paper presents a novel process developed to manufacture poly(methyl methacrylate) (PMMA) pultruded composite. The mechanical, thermal, and dynamic mechanical properties, environmental effect, postformability of various fiber (glass, carbon, and Kevlar 49 aramid fiber) reinforced pultruded PMMA composites have been studied. Results show mechanical properties (i.e., tensile strength, specific tensile strength, tensile modulus, and specific flexural strength) and thermal properties (HDT) increase with fiber content. Kevlar fiber/PMMA composites possess the highest specific tensile strength and HDT, carbon fiber/PMMA composites show the highest tensile strength and tensile modulus, and glass fiber/PMMA composites show the highest specific flexural strength. Pultruded glass-fiber-reinforced PMMA composites exhibit good weather resistance. These composite materials can be postformed by thermoforming under pressure, and mechanical properties of postformed products can be improved. The dynamic shear storage and loss modulus (G′, G″) of pultruded glass-fiber-reinforced PMMA composites increased with decreasing pulling rate, and their shear storage moduli are higher than those of pultruded Nylon 6 and polyester composites.  相似文献   

20.
Banana fiber has been modified by treatments with sodium hydroxide, silanes, cyanoethylation, heat treatment, and latex treatment and the thermal degradation behavior of the fiber was analyzed by thermogravimetry and derivative thermogravimetry analysis. Both treated and untreated fibers showed two‐stage decomposition. All the treatments were found to increase the thermal stability of the fiber due to the physical and chemical changes induced by the treatments. The thermal degradation of treated and untreated banana fiber‐reinforced phenol formaldehyde composites has also been analyzed. It was found that the thermal stability of the composites was much higher than that of fibers but they are less stable compared to neat PF resin matrix. Composite samples were found to have four‐stage degradation. The NaOH treated fiber‐reinforced composites have very good fiber/matrix adhesion and hence improvement in thermal stability is observed. Though both silane treatments increased the thermal stability of the composite the vinyl silane is found to be more effective. Heat treatment improves the crystallinity of the fiber and decreases the moisture content, hence an improved thermal stability. The latex treatment and cyanoethylation make the fiber surface hydrophobic, here also the composite is thermally more stable than untreated one. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号