首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Compared with rigid glass, manufacturing of Cu(In,Ga)Se2 (CIGS) solar cells on flexible stainless steel (SS) substrates has potential to reduce production cost because of the application of roll‐to‐roll processing. Up to now, high‐efficiency cells on SS could only be achieved when the substrate is coated with a barrier layer (e.g. SiOx or Si3N4) for hindering the diffusion of impurities, especially Fe, into the CIGS layer. In this paper, the effect of these impurities on the electronic transport properties of the device is investigated. Using admittance spectroscopy, the presence of a deep defect level at around 320 meV is observed, which deteriorates the efficiency of the solar cells. Furthermore, it is shown that reducing substrate temperature during CIGS deposition is an effective alternative to a barrier layer for reducing diffusion of detrimental Fe impurities into the absorber layer. By applying a CIGS growth process for deposition at low substrate temperatures, an efficiency of 17.7%, certified by Fraunhofer Institute ISE, Freiburg, was achieved on Mo/Ti‐coated SS substrate without an additional metal‐oxide or metal‐nitride impurity diffusion barrier layer. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Recent breakthroughs in Cu(In,Ga)Se2 (CIGS) thin film solar cell energy conversion efficiency are related to the application of a potassium fluoride post‐deposition treatment (KF‐PDT) to the completed absorber. Using X‐ray photoelectron spectroscopy and Raman scattering, we compare CIGS layers prior and after the KF‐PDT in the case of a deterioration and an improvement of the solar cells photovoltaic performance. The purpose is to study and model the modification of the surface in both cases and address some of the required characteristics of the absorber, grown on soda lime glass by 3‐stage process, in order to take advantage of the treatment. We show that, in both cases, KF‐PDT induces the formation of GaF3, which is removed during the subsequent chemical bath deposition of CdS, explaining the Ga depleted absorber surface, already reported in literature. However, the presence or not of an ordered defect compound (ODC), correlated with the third stage duration during the CIGS growth, is shown to be crucial in the modifications of the surface induced by the treatment. When an ODC is present prior the treatment, KF‐PDT leads to the formation of a surface layer of In2Se3 containing K, and the photovoltaic performance of completed solar cells are improved. When no ODC is present prior KF‐PDT, no trace of K is found at the absorber surface after the treatment, copper (Cu) segregates into detrimental CuxSe phases, high amount of elemental Se is formed, and the photovoltaic performance are lowered. The role of the ODC during the KF‐PDT is finally discussed.  相似文献   

3.
The remarkable potential for inexpensive upscale of solution processing technologies is expected to enable chalcogenide‐based photovoltaic systems to become more widely adopted to meet worldwide energy needs. Here, we report a thin‐film solar cell with solution‐processed Cu(In,Ga)(S,Se)2 (CIGS) absorber. The power conversion efficiency of 15.2% is the highest published value for a pure solution deposition technique for any photovoltaic absorber material and is on par with the best nonvacuum‐processed CIGS devices. We compare the performance of our cell with a world champion vacuum‐deposited CIGS cell and perform detailed characterization, such as biased quantum efficiency, temperature‐dependent electrical measurement, time‐resolved photoluminescence, and capacitance spectroscopy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Cu2ZnSnS4 (CZTS) nanoparticle inks synthesized by the injection of metal precursors into a hot surfactant offer an attractive route to the fabrication of Earth‐abundant Cu2ZnSn(S,Se)4 (CZTSSe) thin film photovoltaic absorber layers. In this work it is shown that the chemical reaction conditions used to produce CZTS nanoparticle inks have a fundamental influence on the performance of thin film solar cells made by converting the nanoparticles to large CZTSSe grains in a selenium rich atmosphere and subsequent cell completion. The reaction time, temperature and cooling rate of the nanoparticle fabrication process are found to affect doping level, secondary phases and crystal structure respectively. Specifically, prolonging the reaction offers a new route to increase the concentration of acceptor levels in CZTSSe photovoltaic absorbers and results in higher device efficiency through an increase in the open circuit voltage and a reduction in parasitic resistance. Quenching the reaction by rapid cooling introduces a wurtzite crystal structure in the nanoparticles which significantly degrades the device performance, while elevating the reaction temperature of the nanoparticle synthesis introduces a secondary phase Cu2SnS3 in the nanoparticles and results in the highest cell efficiency of 6.26%. This is correlated with increased doping in the CZTSSe absorber and the results demonstrate a route to controlling this parameter. © 2016 The Authors. Progress in Photovoltaics: Research and Applications published by John Wiley & Sons, Ltd.  相似文献   

5.
Reducing Cu(In,Ga)Se2 (CIGS) absorber thickness into submicron regime provides an opportunity for reducing CIGS solar cell manufacturing time and cost. However, CIGS with submicron‐thick absorber would suffer strong absorption loss in the long‐wavelength region. In this paper, we report a new fabrication route for CIGS solar cells on soda‐lime glass substrates with different Ga content (0.3 < [Ga]/([Ga] + [In]) < 0.6), all with absorber thicknesses around 0.9 µm. Efficiency of 17.52% has been achieved for cells with high Ga content of [Ga]/([Ga] + [In]) = 41%, which is currently the best reported efficiency for submicron‐thick CIGS solar cells. Unlike the normal‐thickness absorber (2–3 µm) that has an optimal [Ga]/([Ga] + [In]) of ~32%, the increased value of optimal [Ga]/([Ga] + [In]) in submicron‐thick absorber greatly enhances the open‐circuit voltage, by nearly 15% compared with that of samples with Ga content optimized at normal absorber thickness. This large gain in VOC well compensates the absorption loss in the long‐wavelength region and contributes to the enhancement of final solar cell efficiency. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
A green energy device with a CuInGaSe2 (CIGS) photovoltaic (PV) cell covered with a passive light‐trapping structure (ZnO nanowires (NWs)) and connected to an active energy‐harvesting device (thermoelectric generator (TEG)) is presented. The efficiency of the ZnO NWs/CIGS PV device obtained using a deposition temperature of 550 °C and Cd‐free processes reaches 16.5%. The series‐connected CIGS PV cell with a TEG had a record‐high efficiency of 22% at a cool‐side temperature (Tc) below 5 °C. The open‐circuit voltage (Voc) of the hybrid CIGS PV/TEG device was increased from 0.64 to 0.85 V. This technology has potential for high‐efficiency energy‐harvesting applications. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Among different process routes for Cu(In,Ga)Se2 (CIGS) solar cells, sufficient Se supply is commonly required to obtain high‐quality CIGS films. However, supplying extra Se increases the cost and the complexity. In this work, we demonstrate that extra Na incorporation can substantially increase efficiency of Se‐deficient CIGS solar cells, fabricated by sputtering from a quaternary CIGS target without extra Se supply, from 1.5% to 11.0%. The Se‐deficient CIGS device without extra NaF reveals a roll‐over I–V curve at room temperature as well as significantly reduced Jsc and fill factor at low temperatures. The electrical characteristics of Se‐deficient CIGS films are well explained and modeled by the low p‐type doping due to high density of compensating donors and the presence of deep defects possibly originating from the anti‐bonding levels of Se vacancies. The significant improvement after extra Na incorporation is attributable to the Na‐induced passivation of Se vacancies and the increased p‐type doping. Our result suggests that extra Na addition can effectively compensate the Se deficiency in CIGS films, which provides a valuable tuning knob for compositional tolerance of absorbers, especially for the Se‐deficient CIGS films. We believe that our findings can shine light on the development of novel CIGS processes, distinct from previous ones fabricated in Se‐rich atmosphere. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
We report on improvements to the energy conversion efficiency of wide bandgap (Eg > 1.2 eV) solar cells on the basis of CuIn1−xGaxSe2. Historically, attaining high efficiency (>16%) from these types of compound semiconductor thin films has been difficult. Nevertheless, by using (a) the alkaline‐containing high‐temperature EtaMax glass substrates from Schott AG, (b) elevated substrate temperatures of 600–650 °C, and (c) high vacuum evaporation from elemental sources following National Renewable Energy Laboratory's three‐stage process, we have been able to improve the performance of wider bandgap solar cells with 1.2 < Eg < 1.45 eV. The current density–voltage (J–V) data we present includes efficiencies >18% for absorber bandgaps of ~1.30 eV and efficiencies of ~16% for bandgaps up to ~1.45 eV. In comparing J–V parameters in similar materials, we establish gains in the open‐circuit voltage and, to a lesser degree, the fill factor value, as the reason for the improved performance. The higher voltages seen in these wide gap materials grown at high substrate temperatures are due to reduced recombination. We establish the existence of random and discrete grains within the CIGS absorbers that yield limited or no generation/collection of minority carriers. We also show that interfacial recombination is the main mechanism limiting additional enhancements to open‐circuit voltage and therefore performance. Solar cell results, absorber materials characterization, and experimental details and discussion are presented. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
The effect of atomic layer deposition temperature of Zn1‐xMgxO buffer layers for Cu(In,Ga)Se2 (CIGS) based solar cell devices is evaluated. The Zn1‐xMgxO films are grown using diethyl zinc, bis‐cyclopentadienyl magnesium and water as precursors in a temperature range of 105 to 180°C. High efficiency devices are produced in the region from 105 up to 135°C. At a Zn1‐xMgxO deposition temperature of 120°C, a maximum cell efficiency of 15·5% is reached by using a Zn1‐xMgxO layer with an x‐value of 0·2 and a thickness of 140 nm. A significant drop in cell efficiency due to large losses in open circuit voltage and fill factor is observed for devices grown at temperatures above 150°C. No differences in chemical composition, structure and morphology of the samples are observed, except for the samples prepared at 105 and 120°C that show elemental selenium present at the buffer/absorber interface. The selenium at the interface does not lead to major degradation of the solar cell device efficiency. Instead, a decrease in Zn1‐xMgxO resistivity by more than one order of magnitude at growth temperatures above 150°C may explain the degradation in solar cell performance. From energy filtered transmission electron microscopy, the width of the CIGS/Zn1‐xMgxO chemical interface is found to be thinner than 10 nm without any areas of depletion for Cu, Se, Zn and O. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Polycrystalline CuIn1−xGaxSe2 (CIGS) thin films were deposited by the non‐vacuum, near‐atmospheric‐pressure selenization of stacked metallic precursor layers. A study was carried out to investigate the influence of significant factors of the absorber on the solar cells performance. An efficiency enhancement was obtained for Cu/(In+Ga) atomic ratios between 0·93 and 0·95. The slope of the observed energy bandgap grading showed a strong influence on the VOC and the short circuit current density JSC. An increase of the Ga content in the active region of the absorber was achieved by the introduction of a thin Ga layer on the Mo back contact. This led to an improvement of efficiency and VOC. Furthermore, an enhanced carrier collection was detected by quantum efficiency measurements when the absorber layer thickness was slightly decreased. Conversion efficiencies close to 10% have been obtained for these devices. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
The engineering of the electron transport layer (ETL)/light absorber interface is explored in perovskite solar cells. Single‐crystalline TiO2 nanorod (NR) arrays are used as ETL and methylammonium lead iodide (MAPI) as light absorber. A dual ETL surface modification is investigated, namely by a TiCl4 treatment combined with a subsequent PC61BM monolayer deposition, and the effects on the device photovoltaic performance were evaluated with respect to single modifications. Under optimized conditions, for the combined treatment synergistic effects are observed that lead to remarkable enhancements in cell efficiency, from 14.2% to 19.5%, and to suppression of hysteresis. The devices show JSC, VOC, and fill factor as high as 23.2 mA cm?2, 1.1 V, and 77%, respectively. These results are ascribed to a more efficient charge transfer across the ETL/perovskite interface, which originates from the passivation of defects and trap states at the ETL surface. To the best of our knowledge, this is the highest cell performance ever reported for TiO2 NR‐based solar cells fabricated with conventional MAPI light absorber. Perspective wise, this ETL surface functionalization approach combined with more recently developed and better performing light absorbers, such as mixed cation/anion hybrid perovskite materials, is expected to provide further performance enhancements.  相似文献   

12.
Solution processing of Cu(In,Ga)Se2 (CIGS) absorber makes it cost-competitive in the photovoltaic market. It is reported that copper-poor ordered vacancy compound (OVC) is crucial for high performance CIGS solar cells. However, in solution process method, controllable formation of OVC is unavailable and limited research has been carried out. In this work, the controllable formation of the OVC phase on the CIGS surface is successful by controlling the selenization temperature and intentional variation of Cu/(In+Ga) stoichiometry in precursors for top layers and bulk layers deposition. The effects of OVC contents on the device performance are investigated. The CIGS thin film with OVC phase exhibits a lower valence band position. Meanwhile, the CIGS devices with optimized OVC content show decreased interface defects density and better carrier collection ability. The above advantages translate into a champion PCE of 16.39% for CIGS device with OVC phase, which is the champion performance among non-hydrazine solution-processed CIGS solar cells. The results demonstrate that the controllable formation of OVC phase approach should make a significant contribution to the efficiency promoting of solution processed CIGS solar cells.  相似文献   

13.
Nanocrystal‐based Cu2Zn(SnyGe1‐y)(SxSe4‐x) (CZTGeSSe) thin‐film solar cell absorbers with tunable band gap have been prepared. Maximum solar‐conversion total area efficiencies of up to 9.4% are achieved with a Ge content of 30 at.%. Improved performance compared with similarly processed films of Cu2ZnSn(SxSe4‐x) (CZTSSe, 8.4% efficiency) is achieved through controlling Ge loss from the bulk of the absorber film during the high‐temperature selenization treatment, although some Ge loss from the absorber surface is still observed following this step. Despite limitations imposed by elemental losses present at the absorber surface, we find that Ge alloying leads to enhanced performance due to increased minority charge carrier lifetimes as well as reduced voltage‐dependent charge carrier collection. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Current‐voltage, admittance spectroscopy, and drive‐level capacitance profiling measurements were taken on Cu(In1−xGax)(Se1−ySy)2 solar cell devices. The devices were made using two different types of absorbers. One set of absorbers was deposited via physical vapor deposition, while the other set of absorbers was made by selenization of metal precursors. Additionally, each type of absorber was completed with one of two different types of buffer treatments: a CdS layer or a cadmium partial electrolyte surface modification. The devices with the evaporated absorbers had larger values of VOC, higher carrier densities, lower densities of trapping defects, and likely shallower gap states. Results were qualitatively similar for the CdS and partial electrolyte buffers. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
A comparative study of chemical bath deposition (CBD) of ZnS, CdS, and a mixture of (Cd,Zn)S buffer layers has been carried out on electrodeposited CuIn(S,Se)2 (CISSe) and coevaporated Cu(In,Ga)Se2 (CIGS) absorbers. For an optimal bath composition with the ratio of [Zn]/[Cd] = 25, efficiencies higher than those obtained with CdS and ZnS recipes, both on co‐evaporated CIGS and electrodeposited CISSe, have been obtained independent of the absorber used. In order to better understand the (Cd,Zn)S system and its impact on the increased efficiency of cells, predictions from the solubility diagrams of CdS and ZnS in aqueous medium were made. This analysis was completed by in situ growth studies with varying bath composition by quartz crystal microbalance (QCM). The morphology and composition of the films were studied using scanning electron microscopy (SEM) and X‐ray photoelectron spectra (XPS) techniques. Preliminary XPS studies showed that films are composed of a mixture of CdS and Zn(O,OH) phases and not a pure ternary Cd1 − xZnxS compound. The effect of the [Zn]/[Cd] molar ratio on properties of the corresponding CISSe and CIGS solar cells was investigated by current voltage [J(V)] and capacitance voltage [C(V)] characterizations. The origin of optimal results is discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
In‐situ spectroscopic ellipsometry (SE) was employed to extract the complex dielectric functions ε = ε1 + iε2 over the spectral range of 0.75–6.5 eV for a set of polycrystalline CuIn1−xGaxSe2 (CIGS) thin films with different alloy compositions x = [Ga]/{[In] + [Ga]}. For highest possible accuracy in ε for each CIGS thin film, specialized SE procedures were adopted including (i) deposition to a thickness of ~600 Å on smooth native oxide covered crystal silicon wafers, which minimizes the surface roughness on the film and thus the required corrections in data analysis, and (ii) measurement in‐situ, which minimizes ambient contamination and oxidation of the film surface. Assuming an analytical form for each of the ε spectra for these CIGS films, oscillator parameters were obtained in best fits, and these parameters were fit in turn to polynomials in x. With the resulting database of polynomial coefficients, the ε spectra for any composition of CIGS can be generated from the single parameter, x. In addition to enabling accurate contactless determination of bulk and surface roughness layer thicknesses of CIGS films by high speed multichannel SE, the database enables characterization of the composition and its profile with depth into these films, and even how the depth profile varies spatially within the plane of the films. In this study, depth profile parameters were found to correlate spatially with solar cell performance parameters. As a result, SE provides the capability of contactless compositional analysis of production‐scale CIGS photovoltaic modules at high speed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Reducing the optical losses and increasing the reflection while maintaining the function of doped layers at the back contact in solar cells are important issues for many photovoltaic applications. One approach is to use doped microcrystalline silicon oxide (μc‐SiOx:H) with lower optical absorption in the spectral range of interest (300 nm to 1100 nm). To investigate the advantages, we applied the μc‐SiOx:H n‐layers to a‐Si:H single junction solar cells. We report on the comparison between amorphous silicon (a‐Si:H) single junction solar cells with either μc‐SiOx:H n‐layers or non‐alloyed silicon n‐layers. The origin of the improved performance of a‐Si:H single junction solar cells with the μc‐SiOx:H n‐layer is identified by distinguishing the contributions because of the increased transparency and the reduced refractive index of the μc‐SiOx:H material. The solar cell parameters of a‐Si:H solar cells with both types of n‐layers were compared in the initial state and after 1000 h of light soaking in a series of solar cells with various absorber layer thicknesses. The measurement procedure for the determination of the solar cell performance is described in detail, and the measurement accuracy is evaluated and discussed. For an a‐Si:H single junction solar cell with a μc‐SiOx:H n‐layer, a stabilized efficiency of 10.3% after 1000 h light soaking is demonstrated. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Cu2ZnSn(S,Se)4(CZTS)材料具有与Cu(In,Ga)Se2(CIGS)材料相似的光学性质和半导体性质,且原料丰富,是CIGS薄膜太阳电池重要的后备材料。有关CZTS薄膜制备工艺的研究和电池器件转换效率提升的研究正成为本领域新的研究开发热点。目前,有实力的薄膜太阳电池研究队伍已经针对CZTS薄膜太阳电池开展了持续的研究,试图通过不同的CZTS吸收层制备方式和优化电池组装工艺过程,进一步提高CZTS薄膜太阳电池的光电转换效率。文章阐述了CZTS材料特性,着重介绍了目前国内外所采用的CZTS薄膜制备方法,详细讨论了各种薄膜沉积技术的优缺点。最后展望了CZTS电池的发展趋势。  相似文献   

19.
We analyzed the interface characteristics of Zn‐based thin‐film buffer layers formed by a sulfur thermal cracker on a Cu(In,Ga)Se2 (CIGS) light‐absorber layer. The analyzed Zn‐based thin‐film buffer layers are processed by a proposed method comprising two processes — Zn‐sputtering and cracker‐sulfurization. The processed buffer layers are then suitable to be used in the fabrication of highly efficient CIGS solar cells. Among the various Zn‐based film thicknesses, an 8 nm–thick Zn‐based film shows the highest power conversion efficiency for a solar cell. The band alignment of the buffer/CIGS was investigated by measuring the band‐gap energies and valence band levels across the depth direction. The conduction band difference between the near surface and interface in the buffer layer enables an efficient electron transport across the junction. We found the origin of the energy band structure by observing the chemical states. The fabricated buffer/CIGS layers have a structurally and chemically distinct interface with little elemental inter‐diffusion.  相似文献   

20.
Cu(In,Ga)Se2 (CIGS) and related semiconducting compounds have demonstrated their high potential for high-efficiency thin-film solar cells. The highest efficiency for CIGS-based thin-film solar cells has been achieved with CdS buffer layers prepared by a solution growth method known as chemical bath deposition (CBD). With the aim of developing Cd-free chalcopyrite-based thin-film solar cells, Zn(Se,OH)x buffer layers were deposited by CBD on polycrystalline Cu(In,Ga)(S,Se)2 (CIGSS). A total-area conversion efficiency of 13·7% was certified by the Frauenhofer Institute for Solar Energy Systems. The CIGSS absorber was fabricated by Siemens Solar Industries (California). For device optimization, the thickness and good surface coverage were controlled by XPS–UPS photoemission spectroscopy. A Zn(Se,OH)x thickness below 7 nm has been found to be optimum for achieving a homogeneous and compact buffer film on CIGSS, with open-circuit photovoltage Voc=535 mV, fill factor FF=70·76% and a high short-circuit photocurrent density Jsc=36·1 mA cm−2. Copyright © 1998 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号