首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 4 毫秒
1.
Both wettability and crystallizability control poly(ε‐caprolactone)'s (PCL) further applications as biomaterial. The wettability is an important property that is governed by both chemical composition and surface structure. In this study, we prepared the PCL/poly(N‐vinylpyrrolidone) (PVP) blends via successive in situ polymerization steps aiming for improving the wettability and decreasing crystallizability of PCL. The isothermal crystallization of PCL/PVP at different PVP concentrations was carried out. The equilibrium melting point (T), crystallization rate, and the melting behavior after isothermal crystallization were investigated using differential scanning calorimetry (DSC). The Avrami equation was used to fit the isothermal crystallization. The DSC results showed that PVP had restraining effect on the crystallizability of PCL, and the crystallization rate of PCL decreased clearly with the increase of PVP content in the blends. The X‐ray diffraction analysis (WAXD) results agreed with that. Water absorptivity and contact angle tests showed that the hydrophilic properties were improved with the increasing content of PVP in blends. The coefficient for the water diffusion into PCL/PVP blends showed to be non‐Fickian in character. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
In this study, amphiphilic poly(ε‐caprolactone)–pluronic–poly(ε‐caprolactone) (PCL–pluronic–PCL, PCFC) copolymers were synthesized by ring‐opening copolymerization and then reacted with isophorone diisocyanate to form polyurethane (PU) copolymers. The molecular weight of the PU copolymers was measured by gel permeation chromatography, and the chemical structure was analyzed by 1H‐nuclear magnetic resonance and Fourier transform infrared spectra. Then, the PU copolymers were processed into fibrous scaffolds by the electrospinning technology. The morphology, surface wettability, mechanical strength, and cytotoxicity of the obtained PU fibrous mats were investigated by scanning electron microscopy, water contact angle analysis, tensile test, and MTT analysis. The results show that the molecular weights of PCFC and PU copolymers significantly affected the physicochemical properties of electrospun PU nanofibers. Moreover, their good in vitro biocompatibility showed that the as‐prepared PU nanofibers have great potential for applications in tissue engineering. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43643.  相似文献   

3.
Two series of poly(ε‐caprolactone)‐b‐poly(ethylene glycol)‐b‐poly(ε‐caprolactone) triblock copolymers were prepared by the ring opening polymerization of ε‐caprolactone in the presence of poly(ethylene glycol) and dibutylmagnesium in 1,4‐dioxane solution at 70°C. The triblock structure and molecular weight of the copolymers were analyzed and confirmed by 1H NMR, 13C NMR, FTIR, and gel permeation chromatography. The crystallization and thermal properties of the copolymers were investigated by wide‐angle X‐ray diffraction (WAXD) and differential scanning calorimetry (DSC). The results illustrated that the crystallization and melting behaviors of the copolymers were depended on the copolymer composition and the relative length of each block in copolymers. Crystallization exothermal peaks (Tc) and melting endothermic peaks (Tm) of PEG block were significantly influenced by the relative length of PCL blocks, due to the hindrance of the lateral PCL blocks. With increasing of the length of PCL blocks, the diffraction and the melting peak of PEG block disappeared gradually in the WAXD patterns and DSC curves, respectively. In contrast, the crystallization of PCL blocks was not suppressed by the middle PEG block. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
A novel biocompatible composite of poly(ε‐caprolactone) (PCL) was synthesized via in situ ring‐opening polymerization method of ε‐caprolactone in the presence of reduced graphene oxide (RGO). Fourier transform infrared (FTIR) and X‐ray photoelectron spectroscopy (XPS) studies support a strong interaction between PCL and RGO. The crystallization behavior and thermal stability of these composites were studied using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), respectively. Honeycomb‐patterned thin films with regular structures were fabricated by casting the composite solution under humid conditions. The temperature‐dependent DC conductivity of the honeycomb‐patterned composite films was studied in the range of 290−330 K, which revealed a semiconducting behavior in the transport properties of the composite films. DC conductivity of the patterned films was increased by increasing the concentration of RGO in the composites and in the increased temperature. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

5.
The aim of the study was to investigate the mechanical properties and biodegradability of poly(trimethylenecarbonate‐ε‐caprolactone)‐block‐poly(p‐dioxanone) [P(TMC‐ε‐CL)‐block‐PDO] in comparison with poly(p‐dioxanone) and poly(glycolide‐ε‐caprolactone) (Monocryl®) monofilaments in vivo and in vitro. P(TMC‐ε‐CL)‐block‐PDO copolymer and poly(p‐dioxanone) were prepared by using ring‐opening polymerization reaction. The monofilament fibers were obtained using conventional melt spun methods. The physicochemical and mechanical properties, such as viscosity, molecular weight, crystallinity, and knot security, were studied. Tensile strength, breaking strength retention, and surface morphology of P(TMC‐ε‐CL)‐block‐PDO, poly(p‐dioxanone), and Monocryl monofilament fibers were studied by immersion in phosphate‐buffered distilled water (pH 7.2) at 37°C and in vivo. The implantation studies of absorbable suture strands were performed in gluteal muscle of rats. The polymers, P(TMC‐ε‐CL)‐block‐PDO, poly(p‐dioxanone), and Monocryl, were semicrystalline and showed 27, 32, and 34% crystallinity, respectively. Those mechanical properties of P(TMC‐ε‐CL)‐block‐PDO were comparatively lower than other polymers. The biodegradability of poly(dioxanone) homopolymer is much slower compared with that of two copolymers. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 737–743, 2006  相似文献   

6.
The air‐side surface composition of a series of poly(ε‐caprolactone)–perfluoropolyether–poly(ε‐caprolactone) triblock copolymers with different compositions and block lengths have been studied by angle‐dependent X‐ray photoelectron spectroscopy (XPS). The weight percentage of the perfluoropolyether (PFPE) and polycaprolactone (PCL) blocks, and ethylene oxide linker (RH) has been calculated in different ways: from C1s, O1s and F1s photoemission peaks and by line fitting of the C1s and O1s envelopes. The atomic sensitivity factors and the parameters used to fit the peak envelopes have been experimentally determined using some reference materials. A critical discussion of the different methods used in the surface characterization and the degradation of PFPE segments, induced by irradiation beam, have been also reported. A large excess of PFPE with respect to the bulk composition was observed in all samples, and the angular dependence of the XPS signal demonstrated that the content of the fluorinated block segment increased by decreasing the sampling depth. The PFPE surface concentration was also decreased by increasing the PCL/PFPE ratio, but the surfaces of the samples were still dominated by PFPE segments for copolymers with a bulk PFPE composition lower than 10%. Moreover, copolymers with similar PCL/PFPE bulk ratios but with different PFPE block lengths, showed similar PFPE surface composition when the number‐average molecular weight (Mn) was 2000 and 3200 g mol?1, while that observed for copolymers containing PFPE block with Mn 900 g mol?1 was lower. Copyright © 2003 Society of Chemical Industry  相似文献   

7.
The aim of this work was to better understand the performance of binary blends of biodegradable aliphatic polyesters to overcome some limitations of the pure polymers (e.g., brittleness, low stiffness, and low toughness). Binary blends of poly(ε‐caprolactone) (PCL) and poly(lactic acid) (PLA) were prepared by melt blending (in a twin‐screw extruder) followed by injection molding. The compositions ranged from pure biodegradable polymers to 25 wt % increments. Morphological characterization was performed with scanning electron microscopy and differential scanning calorimetry. The initial modulus, stress and strain at yield, strain at break, and impact toughness of the biodegradable polymer blends were investigated. The properties were described by models assuming different interfacial behaviors (e.g., good adhesion and no adhesion between the dissimilar materials). The results indicated that PCL behaved as a polymeric plasticizer to PLA and improved the flexibility and ductility of the blends, giving the blends higher impact toughness. The strain at break was effectively improved by the addition of PCL to PLA, and this was followed by a decrease in the stress at break. The two biodegradable polymers were proved to be immiscible but nevertheless showed some degree of adhesion between the two phases. This was also quantified by the mechanical property prediction models, which, in conjunction with material property characterization, allowed unambiguous detection of the interfacial behavior of the polymer blends. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
The three‐dimensional solubility parameter model was applied to analyze solution thermodynamic data of 27 solutes in poly(ε‐caprolactone) (PCL) between 70 and 110 °C. A linear regression method was compared with a nonlinear least square regression method, which searches solubility parameter components by minimization of the sum of error squares. The parameters of polymers were the same by both methods. When compared with the error in predicting χRT/V, the data showed a different slope from the simple three‐dimensional model. These deviations were reduced by a different model using a smaller weight on the polar and hydrogen bonding components. In the new model, the solubility parameter components were closer to the value of a structure analogue of PCL. The confidence intervals for the parameters were estimated from a linearized equation based on the sum of error squares. The solubility parameter components obtained were different from the average values of the five solutes with the smallest χ. The inclusion of solutes with high hydrogen bonding components contributed to the increase of the component in the nonlinear regression method. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2002–2009, 2006  相似文献   

9.
The fullerene grafted poly(ε‐caprolactone) (PCL) was successfully synthesized with a graft efficiency of 80%. The fullerene moieties grafted onto the PCL chain aggregate into 1–2 μm particles so that a physical pseudo‐network is formed. Because of the existence of the network structure, the fullerene grafted PCL film can retain its shape at much higher temperatures than that of pure PCL film, as observed in dynamic mechanical tests. It shows a hydrophobic gelling behavior in chloroform solution. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
Three‐arm poly (ε‐caprolactone, reactive extruded) (REX‐PCL) polymer was continuously produced using a twin‐screw extruder with aluminum tri‐sec butoxide (ATSB) initiator in residence times of less than five minutes. Monomer conversions in excess of 95% were achieved, and high molecular weight PCL was produced. The number average molecular weight of each arm of REX‐PCL ranged from 30,000 to 200,000 g/mol. A screw configuration comprising entirely of conveying elements was most effective in the extrusion polymerization process. The REX‐PCL polymer was characterized using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and intrinsic viscosity measurements. POLYM. ENG. SCI. 46:235–240, 2006. © 2006 Society of Plastics Engineers  相似文献   

11.
Atactic poly(3‐hydroxybutyrate) (a‐PHB) and block copolymers of poly(ethylene glycol) (PEG) with poly(ε‐caprolactone) (PCL‐b‐PEG) were synthesized through anionic polymerization and coordination polymerization, respectively. As demonstrated by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA) measurements, both chemosynthesized a‐PHB and biosynthesized isotactic PHB (i‐PHB) are miscible with the PEG segment phase of PCL‐b‐PEGs. However, there is no evidence showing miscibility between both PHBs and the PCL segment phase of the copolymer even though PCL has been block‐copolymerized with PEG. Based on these results, PCL‐b‐PEG was added, as a compatibilizer, to both the PCL/a‐PHB blends and the PCL i‐PHB blends. The blend films were obtained through the evaporation of chloroform solutions of mixed components. Excitingly, the improvement in mechanical properties of PCL/PHB blends was achieved as anticipated initially upon the addition of PCL‐b‐PEG. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2600–2608, 2001  相似文献   

12.
The morphological development and crystallization behavior of poly(?‐caprolactone) (PCL) in miscible mixtures of PCL and poly(vinyl methyl ether) (PVME) were investigated by optical microscopy as a function of the mixture composition and crystallization temperature. The results indicated that the degree of crystallinity of PCL was independent of the mixture composition upon melt crystallization because the glass‐transition temperatures of the mixtures were much lower than the crystallization temperature of PCL. The radii of the PCL spherulites increased linearly with time at crystallization temperatures ranging from 42 to 49°C. The isothermal growth rates of PCL spherulites decreased with the amount of the amorphous PVME components in the mixtures. Accounting for the miscibility of PCL/PVME mixtures, the radial growth rates of PCL spherulites were well described by a kinetic equation involving the Flory–Huggins interaction parameter and the free energy for the nuclei formation in such a way that the theoretical calculations were in good agreement with the experimental data. From the analysis of the equilibrium melting point depression, the interaction energy density of the PVME/PCL system was calculated to be ?3.95 J/cm3. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

13.
In this article we present a study on the properties of epoxy resins blended with poly(ε‐caprolactone) (PCL). Several blends were prepared with different PCL amounts. The resins used were a diglycidyl ether of bisphenol F (DGEBF) and a triglycidyl p‐amino phenol (TGAP) cured by diethyltoluene diamine (DETDA). All the blends were fully characterized through thermal and mechanical testing. The addition of PCL led to high improvement of toughness but it also reduced the glass transition temperature. Analysis of the rheological and thermal data led to the conclusion that miscible IPNs (interpenetrated networks) were formed. The use of the trifunctional resin TGAP with a percentage varying between 20 wt% and 30 wt% proved to be an efficient means for increasing the glass transition temperature of the mixture based on DGEBF/DETDA with 20 wt% of PCL. POLYM. ENG. SCI. 46:1576–1582, 2006. © 2006 Society of Plastics Engineers.  相似文献   

14.
Poly(vinyl pyrrolidone‐co‐vinyl acetate)‐graft‐poly(ε‐caprolactone) (PVPVAc‐g‐PCL) was synthesized by radical copolymerization of N‐vinyl‐2‐pyrrolidone (VP)/vinyl acetate (VAc) comonomer and PCL macromonomer containing a reactive 2‐hydroxyethyl methacrylate terminal. The graft copolymer was designed in order to improve the interfacial adhesiveness of an immiscible blend system composed of cellulose acetate/poly(ε‐caprolactone) (CA/PCL). Adequate selections of preparation conditions led to successful acquisition of a series of graft copolymer samples with different values of molecular weight ( ), number of grafts (n), and segmental molecular weight of PVPVAc between adjacent grafts (Mn (between grafts)). Differential scanning calorimetry measurements gave a still immiscible indication for all of the ternary blends of CA/PCL/PVPVAc‐g‐PCL (72 : 18 : 10 in weight) that were prepared by using any of the copolymer samples as a compatibilizer. However, the incorporation enabled the CA/PCL (4 : 1) blend to be easily melt‐molded to give a visually homogeneous film sheet. This compatibilizing effect was found to be drastically enhanced when PVPVAc‐g‐PCLs of higher and Mn (between grafts) and lower n were employed. Scanning electron microscopy revealed that a uniform dispersion of the respective ingredients in the ternary blends was attainable with an assurance of the mixing scale of several hundreds of nanometers. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
Electrospun nanocomposites of poly(ε‐caprolactone) (PCL) incorporated with PCL‐grafted cellulose nanocrystals (PCL‐g‐CNC) were produced. PCL chains were grafted from cellulose nanocrystals (CNC) surface by ring‐opening polymerization. Grafting was confirmed by infrared spectroscopy (FTIR) and thermogravimetric analyses (TGA). The resulting PCL‐g‐CNC were then incorporated into a PCL matrix at various loadings. Homogeneous nanofibers with average diameter decreasing with the addition of PCL‐g‐CNC were observed by scanning electron microscopy (SEM). PCL‐g‐CNC domains incorporated into the PCL matrix were visualized by transmission electron microscopy (TEM). Thermal and mechanical properties of the mats were analyzed by differential scanning calorimetry (DSC), TGA and dynamic mechanical analysis (DMA). The addition of PCL‐g‐CNC into the PCL matrix caused changes in the thermal behavior and crystallinity of the electrospun fibers. Significant improvements in Young's modulus and in strain at break with increasing PCL‐g‐CNC loadings were found. These results highlighted the great potential of cellulose nanocrystals as a reinforcement phase in electrospun PCL mats, which can be used as biomedical materials. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43445.  相似文献   

16.
The confined crystallization of poly(?‐caprolactone) (PCL) block in poly(?‐caprolactone)–poly(l ‐lactide) (PCL‐PLLA) copolymers was investigated using differential scanning calorimetry, polarized optical microscopy, scanning electronic microscopy and atomic force microscopy. To study the effect of crystallization and molecular chain motion state of PLLA blocks in PCL‐PLLA copolymers on PCL crystallization morphology, high‐temperature annealing (180 °C) and low‐temperature annealing (80 °C) were applied to treat the samples. It was found that the crystallization morphology of PCL block in PCL‐PLLA copolymers is not only related to the ratio of block components, but also related to the thermal history. After annealing PCL‐PLLA copolymers at 180 °C, the molten PCL blocks are rejected from the front of PLLA crystal growth into the amorphous regions, which will lead to PCL and PLLA blocks exhibiting obvious fractionated crystallization and forming various morphologies depending on the length of PLLA segment. On the contrary, PCL blocks more easily form banded spherulites after PCL‐PLLA copolymers are annealed at 80 °C because the preexisting PLLA crystal template and the dangling amorphous PLLA chains on PCL segments more easily cause unequal stresses at opposite fold surfaces of PCL lamellae during the growth process. Also, it was found that the growth rate of banded spherulites is less than that of classical spherulites and the growth rate of banded spherulites decreases with decreasing band spacing. © 2019 Society of Chemical Industry  相似文献   

17.
A nanofiber membrane composed of poly(ε‐caprolactone) (PCL), poly(vinyl pyrrolidone) (PVP), and silver nanoparticles was prepared via electrospinning technique. The morphology and structure of the PCL/PVP/Ag nanofibers composite were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR), X‐ray diffraction (XRD), and X‐ray photoelectron spectroscopy (XPS). The SEM images showed that various composites of PCL/PVP/Ag could be electrospun to yield continuous and uniform nanofibers. FTIR spectra indicated that the molecular interactions between PCL and PVP are weak. The hydrophilicity, mechanical property, and swelling behavior of the as‐spun composites can be manipulated by altering the blend ratio of PCL/PVP. XRD patterns and XPS spectra showed that the Ag nanoparticles were dispersed in the PCL/PVP nanofiber composites; and the Ag nanoparticles endowed the PCL/PVP/Ag composite with antibacterial activities. The obtained PCL/PVP/Ag nanofiber composites with the morphology similar to that of native extracellular matrix have the potential to create a moist environment and to kill bacteria, which make it possible to be used for wound dressing application. POLYM. COMPOS., 37:2847–2854, 2016. © 2015 Society of Plastics Engineers  相似文献   

18.
The rare earth compound, scandium trifluoromethanesulfonate [Sc(OTf)3], has been used as a water‐tolerant catalyst for the synthesis of star‐shaped poly(ε‐caprolactone)s (SPCLs) with trimethylol propane as trifunctional initiator in solvent at 40°C. Triarm SPCLs have been successfully prepared. The molar mass of SPCLs were determined by end‐group 1H NMR analyses, which could be well controlled by the molar ratio of the monomer to the initiator, and were independent of the amount of Sc(OTf)3 used. Differential scanning calorimetry analyses suggested that the maximal melting point, the cold crystallization temperature, and the degree of crystallinities of SPCLs increased with the increasing of the molar mass and were lower than the linear poly(ε‐caprolactone) (LPCL) with similar molar mass. Furthermore, polarized optical microscopy indicated that LPCL showed fast crystallization rate and good spherulitic morphology with apparent Maltese cross pattern, whereas SPCLs exhibit much lower crystallization rate and poor spherulitic morphology. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
A strategy is introduced for the synthesis of polyethylene‐block‐poly(ε‐caprolactone) block copolymers by a combination of coordination polymerization and ring‐opening polymerization. First, end‐hydroxylated polyethylene (PE‐OH) was prepared with a one‐step process through ethylene/3‐buten‐1‐ol copolymerization catalyzed by a vanadium(III) complex bearing a bidentate [N,O] ligand ([PhN?C(CH3)CHC(Ph)O]VCl2(THF)2). The PE‐OH was then used as macroinitiator for ring‐opening polymerization of ε‐caprolactone, leading to the desired nonpolar/polar diblock copolymers. The block structure was confirmed by spectral analysis using 1H NMR, gel permeation chromatography and differential scanning calorimetry. The unusual topologies of the model copolymers will establish a fundamental understanding for structure–property correlations, e.g. compatibilization, of polymer blends and surface and interface modification of other polymers. © 2014 Society of Chemical Industry  相似文献   

20.
Novel polyesters, poly[(ε‐caprolactone)‐co‐(N‐trityl‐L ‐serine‐β‐lactone)]s, were prepared by copolymerizing ε‐caprolactone (CL) with N‐trityl‐L ‐serine‐β‐lactone (TSL) using ZnEt2 as the catalyst. The number‐average molecular weights were determined which ranged from 2.7 × 104 to 4.9 × 104 Da with dispersity values ranging from 1.6 to 1.8. The structures of the copolymers were investigated by means of 1H NMR, 13C NMR and infrared spectroscopies, thermogravimetric analysis and differential scanning calorimetry. The results indicated that CL and TSL monomer units were randomly distributed within the copolymer backbone structures and the ratios of TSL to CL in the copolymers were close to those in the feeds. After removal of the trityl group under mild condition, a new polyester with side amino groups provided by serine units was obtained. L929 cell culturing test indicated good biocompatibility of the polyester with or without protective groups. © 2012 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号