首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
FTIR micro spectroscopy coupled with mapping techniques is a powerful methodology to evaluate dimensionally dependent changes such as those encountered in PVC weathering processes. It is based on the complexity and specificity of the infrared spctrum and the dimensional resolution of the microscope. This paper will outline a systematic FTIR study of changes observed during outdoor photo degradation of PVC siding capstock formulations, as a function of exposure time and TiO2 level. The results are compared with previously obtained accelerated QUV data. Profiles through the thickness dimension were analyzed to identify degradation species and depth distribution.  相似文献   

2.
The effect of accelerated weathering degradation on the properties of poly(lactic acid) (PLA)/poly(ε-caprolactone) (PCL) blends and PLA/PCL/titanium (IV) dioxide (TiO2) nanocomposites are presented in this paper. The results show that both polymers are susceptible to weathering degradation, but their degradation rates are different and are also influenced by the presence of TiO2 in the samples. Visual, microscopic and atomic force microsocpy observations of the surface after accelerated weathering tests confirmed that degradation occurred faster in the PLA/PCL blends than in the PLA/PCL/TiO2 nanocomposites. The X-ray diffraction results showed the degradation of PCL in the disappearance of its characteristic peaks over weathering time, and also confirmed that PLA lost its amorphous character and developed crystals from the shorter chains formed as a result of degradative chain scission. It was further observed that the presence of TiO2 retarded the degradation of both PLA and PCL. These results were supported by the differential scanning calorimetry results. The thermogravimetric analysis results confirmed that that PLA and PCL respectively influenced each other's thermal degradation, and that TiO2 played a role in the thermal degradation of both PLA and PCL. The tensile properties of both PLA/PCL and PLA/PCL/TiO2 were significantly reduced through weathering exposure and the incorporation of TiO2.  相似文献   

3.
Thermal and dynamic mechanical behaviors of wood plastic composites made of poly vinyl chloride (PVC) and surface treated, untreated wood flour were characterized by using differential scanning calorimetry and dynamic mechanical analysis. Glass transition temperature (Tg) of PVC was slightly increased by the addition of wood flour and by wood flour surface treatments. Heat capacity differences (ΔCp) of composites before and after glass transition were markedly reduced. PVC/wood composites exhibited smaller tan δ peaks than PVC alone, suggesting that less energy was dissipated for coordinated movements and disentanglements of PVC polymer chains in the composites. The rubbery plateaus of storage modulus (E′) curves almost disappeared for PVC/wood composites in contrast to a well defined plateau range for pure PVC. It is proposed that wood flour particles act as “physical crosslinking points” or “pinning centers” inside the PVC matrix, resulting in the absence of the rubbery plateau and high E′ above Tg. The mobility of PVC chain segments were further retarded by the presence of surface modified wood flour. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
In this study, nanocomposites of poly(vinyl chloride) (PVC), using the synthesized titanium dioxide (TiO2) nanorods and commercial nanopowder of titanium dioxide (Degussa P25) were produced by melt blending. The presence of TiO2 nanorods in PVC matrix led to an improvement in mechanical properties of PVC nanocomposites in comparison with unfilled PVC. The photocatalytic degradation behavior of PVC nanocomposites were investigated by measuring their structural change evaluations, surface tension, and mechanical properties before and after UV exposure for 500 h. It was found that mechanical and physical properties of PVC nanocomposites are not reduced significantly after UV exposure in the presence of TiO2 nanorods in comparison with the presence of TiO2 nanoparticles, which can be due to the amorphous structure of the synthesized nanorods. Therefore, it can be concluded that TiO2 nanorods led to an improvement in photostability and mechanical properties of PVC nanocomposites. The interfacial adhesion between TiO2 nanorods and PVC matrix was also investigated. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

5.
《Ceramics International》2023,49(13):21370-21383
Composites of magnesium oxychloride cement (MOC) functionalized with TiO2 nanoparticles are proposed here as an alternative technology to maintain clean building surfaces from airborne pollutants and microorganisms. The MOC composites were characterized by different techniques such as XRD, FTIR, SEM, EDS, UV–Vis, compressive strength, and nanoindentation tests. According to the results, phase 3 (3 Mg(OH)2.MgCl2.8H2O) with needle-like morphology was the primary crystallized hydration product for the MOC composites. Also, the samples exhibited good mechanical properties and good light absorption, allowing them to activate under solar light irradiation. The self-cleaning efficiency of the MOC composites was evaluated by measuring the removal of three types of pollutants: methylene blue (MB), rhodamine B (RhB), and reactive black 5 (RB5), under two scenarios: natural sunlight and accelerated weathering conditions. The self-cleaning tests revealed outstanding efficiencies of the composites to remove MB (82%), RhB (88%), and RB5 (91%) under solar light and accelerated weathering tests. On the other hand, the antimicrobial activity was evaluated against E. coli (gram-negative) and S. aureus (gram-positive) under irradiation. The zone of inhibition (ZOI) showed diameters higher than 21 mm to E. coli for samples with 5% of TiO2 or superior, revealing a high microbial inhibition of the gram-negative bacteria. Also, the structural and morphological stability of the MOC composites was confirmed after several cycles for the accelerating weathering tests, demonstrating their potential to be used outdoors to reduce environmental pollution.  相似文献   

6.
Sung Ho Kim  Takenori Suzuki 《Polymer》2006,47(9):3005-3016
Photo-degradable poly(vinyl chloride) (PVC)/titanium dioxide (TiO2) nanohybrid has been investigated to be utilized as an eco-friendly alternative strategy to the current waste landfill and toxic byproduct-emitting incineration of PVC wastes. Thus, the present study suggests a novel idea related to preparing the photocatalytically degradable nanohybrid through TiO2 nanoparticle-integrated hyperbranched poly(ε-caprolactone) (HPCL-TiO2). The main aim of this study is to find a solution to the unresolved problem in the conventional PVC/TiO2 composites related to the poor dispersion of the nanoparticles in PVC polymer. First, TiO2 nanoparticles are prepared by a sol-gel process, and the size of the particle is about 5-10 nm in diameter as measured by using a transmission electron microscopy (TEM) and dynamic light scattering (DLS). The hyperbranched poly(ε-caprolactone) (HPCL) with numerous COOH groups and good miscibility with PVC as a binder for TiO2 nanoparticles is prepared from moisture-sensitive catalyst-free polymerization of 2,2-bis[ω-hydroxy oligo(ε-caprolactone)methyl]propionic acids followed by modification reaction using pyridinium dichloromate (PDC), then characterized with 1H NMR and 13C NMR analyses. The integration of TiO2 nanoparticles onto HPCL is carried out by a dip-coating method based on the spontaneous self-assembly between TiO2 nanoparticles and HPCL, and the loading amount of the nanoparticles in the HPCL-TiO2 is determined to be ca. 3.3 wt% by X-ray photoelectron spectroscopy (XPS). Then, the HPCL-TiO2 is blended with PVC by solution blending in THF as solvent, and the resulting dispersibility of TiO2 nanoparticle in PVC is characterized by field emission scanning electron microscopy (FESEM) equipped with energy dispersive spectrometry (EDS), which exhibits the TiO2 nanoparticles are well-dispersed in PVC matrix, while some agglomerates are observed in the PVC/TiO2 sample prepared from TiO2 nanoparticle itself. The photocatalytic degradation of the samples are examined and verified from the change of surface morphology, chemical structure, molecular weight, and molecular-level structure after UV irradiation through field-emission scanning electron microscopy (FESEM), UV-visible spectroscopy, gel permeation chromatography (GPC), and positron annihilation lifetime spectroscopy (PALS). The remarkable photocatalytic degradation is observed in the PVC/HPCL-TiO2, and the structural change accompanied by the degradation of the irradiated sample can clearly explained.  相似文献   

7.
The nylon 6‐based composite materials containing untreated and surface‐treated TiO2 particles with 3‐aminopropyltriethoxysilane (APTEOS), as coupling agent were prepared by in situ anionic polymerization of ε‐caprolactam in the presence TiO2 as a filler using the rotational molding technique. The thermal behavior and mechanical properties of the neat nylon 6 and its composites were investigated using various techniques such as differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), a tensile and flexural test and impact strength. Experimental results revealed that both untreated and surface‐modified TiO2 had distinct influence on the melting temperature (Tm), crystallization temperature (Tc), and degree of crystallinity (αDSC), thermal stability, storage modulus (E′), and loss factor (tan δ), and mechanical properties of nylon 6 matrix. Dynamical mechanical analysis indicated that addition of TiO2 particles into nylon 6 matrix increased both the storage modulus and the glass transition temperature. The corresponding values of nylon 6 composites with modified filler were higher than that of nylon 6 composite with untreated TiO2 particles. Tensile and flexural characteristics of the nylon 6 composites were found to increase while the elongation at break and impact strength with increase in TiO2 concentration relative to neat nylon 6. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

8.
In this study, the addition of silane treated TiO2 nanoparticles on the self-cleaning properties of an acrylic facade coating was evaluated. Tetraethoxyorthosilicate, TEOS, was used for surface treatment of TiO2 nanoparticles. The silica grafting on the TiO2 nanoparticles was characterized via Fourier Transform Infrared spectroscopy, specific surface area measurement, pore size distribution, and real density measurements. The effect of surface treatment and content of nanoparticles on the photocatalytic activity of acrylic coating and self-cleaning properties was studied. For this purpose, the photodegradation of Rhodamine B (Rh.B) dyestuff, as a colorant model, was investigated by colorimetric technique, while the coating samples were exposed to UVA irradiation. Performance of the acrylic coating films was evaluated by gloss change during accelerated weathering conditions. Also, the surface morphology of the coating films was studied using SEM analysis. The results showed that the addition of both treated and untreated TiO2 nanoparticles provides self-cleaning property to the acrylic coatings. However, silica surface treatment of TiO2 nanoparticles reduces the coating degradation caused by TiO2. This is more evident when higher concentrations of the treated TiO2 nanoparticles are used.  相似文献   

9.
Three different UV stabilizers, 2‐(2H‐benzotriazol‐2‐yl)‐4,6‐ditertpentylphenol (Tinuvin XT833), 2‐(2H‐benzotriazol‐2‐yl)‐p‐cresol (Tinuvin P), or rutile–titanium dioxide (TiO2) were incorporated into poly(vinyl chloride) (PVC) and wood/PVC (WPVC) composite, and mechanical and physical properties and photostabilities were monitored. The polyene and carbonyl sequences of PVC increased with UV weathering time and with presence of wood flour. The yellowness index increased because of polyene and carbonyl productions, whereas the brightness increased because of the photobleaching of lignin in wood. The photostabilities of PVC and WPVC could be improved through the use of UV stabilizers. Tinuvin P was recommended in this work as the most effective stabilizer for PVC and WPVC composites. The stabilization effect was interfered by presence of wood particles. The mechanical property changes corresponded well to the structural changes under UV for neat PVC. For WPVC composites, the presence of wood particles played more significant effect on the mechanical properties during UV aging than the UV stabilizer. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

10.
The filler effect of xonotlite (6CaO.6SiO2.H2O; needle-shaped) on dynamic mechanical properties, such as storage modulus (E′), loss modulus (E″), and tan δ was studied for the PVC—xonotlite composite system. And the properties of the system containing mechanically or chemically disaggregated particle of xonotlite were compared with those of the system-filled aggregates. The dynamic mechanical properties obviously depends on the dispersion condition of xonotlite particle. The aggregates of xonotlite produces a remarkably high modulus, an increase in Tg, and a decrease in mechanical damping near Tg in the system. On the other hand, the disaggregates, especially the chemical disaggregate one, bring softer or more rubbery properties in these systems. The interaction between matrix and filler was the strongest in the aggregates system and decreases in the order, mechanical disaggregates system, chemical disaggregates system.  相似文献   

11.
The purpose of this research was to investigate the influence of vitamin E (Ve) with different loading levels (0.1, 0.2, 0.4, and 1.2 %wt) on the photodegradation of wood flour/polypropylene composites. Five groups of composites were exposed in a QUV‐accelerated weathering tester for 960 h and then the surface color and the flexural properties were tested. Besides, the surface morphology and chemical changes of the composites during weathering were analyzed by scanning electron microscopy, attenuated total reflectance fourier transform infrared spectroscopy, and X‐ray photoelectron spectroscopy. The results revealed that (1) the addition of Ve had a positive effect on hindering the photooxidation process of the composites; (2) composites with higher Ve loading levels (0.4 and 1.2 %wt) showed better flexural properties, less color fading, cracks, and disclosure of wood fibers on surface after weathering; (3) Ve alleviated the chain scission of PP and the formation of carbonyl groups by reacting with free radicals that generated from photodegradation during weathering. Therefore, it could be an effective antiphotodegradation agent for the composites. POLYM. COMPOS., 35:2085–2093, 2014. © 2014 Society of Plastics Engineers  相似文献   

12.
Nanoparticles (NP) filled permanently antistatic poly(vinyl chloride) (PVC) composites, constituted of dibutyl phthalate (DBP) and antistatic plasticizer (AP) which included bis[2‐(2‐methoxyethoxy)ethyl]phthalate doped with sodium perchlorate (NaClO4), were prepared in a Haaka torque rheometer. Surface resistivity measurement, mechanical test, scanning electron microscopy (SEM) investigation, and thermal gravimetric analysis (TGA)‐differential scanning calorimetry (DSC) analysis were used to investigate the comprehensive properties of PVC/AP/NP (100/40/x) (A40/NP) and PVC/AP/DBP/NP (100/40/40/x) (A80/NP) composites. The results demonstrated that the surface resistivity of A40/NP composites was lower than that of pure A40 composites at a humidity of 60% and 0.1% as the nano SiO2 or TiO2 content is 2 phr, respectively. Moreover, the surface resistivity of A40 composites was decreased by about half an order of magnitude even at the humidity of 0.1% when 2 phr of NP was added. The surface resistivity of A80/NP composites achieved the optimum value as the SiO2 and TiO2 content were 1 phr and 2 phr, respectively. Because the DBP functioned as small molecule plasticizer which endowed PVC composites with comparatively large free volume, the surface resistivity of A80/NP composites is much lower than that of A40/NP composites. The tensile strength and elongation at break of A40/NP (100/2) and A80/NP (100/2) were increased to some extent with respect to pure PVC/AP composites. DSC‐TGA analysis and rheological properties demonstrated that NP filled PVC composites processed good thermostability and thermoprocessability. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

13.
This work examines the effect of wood specimens coated with water based acrylic coatings modified with TiO2 and clay nanoparticles against weathering strain. The long-term durability of the specimens towards climate strain was studied within a relatively short time frame by accelerated climate ageing. The surface changes that occurred as a result of photodegradation of the specimens subjected to accelerated climate exposures were studied using colour measurements and Fourier transform infrared (FTIR) spectroscopy. The results revealed a significant decrease in the intensity of lignin bands attributed to degradation of the lignin component of the wood. However, the intensity of the lignin photodegradation was lower for coated specimens, with slightly lower degradation for the specimens coated with paints modified with TiO2 and unmodified montmorillonite clay nanoparticles.  相似文献   

14.
In this study, 65 wt% aligned untreated long hemp fibre/epoxy (AUL) and aligned alkali treated long hemp fibre/epoxy (AAL) composites cured at 70°C using compression moulding were subjected to accelerated weathering using an accelerated weathering chamber with UV-irradiation and water spray at 50°C for four different time periods (250, 500, 750 and 1000 h). After accelerated weathering, tensile strength (TS), flexural strength, Young's modulus (YM), flexural modulus and fracture toughness (K Ic) were found to decrease and impact energy (IE) was found to increase for both AUL and AAL composites. AUL composite had greater overall reduction in mechanical properties than that for AAL composite upon exposure to accelerated weathering environment. FTIR, TGA and WAXRD analyses of the accelerated weathered composites support the results of the deterioration of mechanical properties upon exposure to accelerated weathering environment.  相似文献   

15.
In this study, the effects of the surface chemical modification of titanium dioxide (TiO2) nanoparticles and their addition into polyamide 11 (PA11) on the mechanical, dynamic‐mechanical, and tribological properties of PA11/TiO2 nanocomposites were investigated. To improve the interfacial adhesion between the nanoparticles and the polymeric matrix, the surface of TiO2 nanoparticles was modified with 3‐aminopropyl trimethoxysilane (ATPMS). Nuclear magnetic resonance (NMR), infrared spectroscopy (IR), and thermogravimetric analysis (TG) were used to evaluate the efficiency of the surface chemical modification of TiO2 nanoxide. PA11/TiO2 nanocomposites with 2 and 4 wt% of TiO2 were prepared in an internal mixer. The interfacial adhesion between the matrix and the TiO2 was evaluated by dynamic‐mechanical analysis (DMA), and the dispersion of nanoparticles was analyzed by scanning electron microscopy (SEM). The NMR spectrum of the modified TiO2 exhibited peaks in the region between −55 ppm and −70 ppm, indicating disubstituted and trisubstituted chemical structures between alkoxysilano structures and TiO2. Nanocomposites with modified TiO2 exhibited the lowest tan δ peak values, which provide evidence that the chemical modification of the TiO2 facilitated energy dissipation at the interface of TiO2 with the PA11 matrix. Surface modification of the TiO2 nanoparticles with ATPMS caused a greater reduction of the mass loss by abrasion when compared with nonmodified PA11/TiO2 nanocomposites; this reduction reached approximately 70% in comparison with the mass loss of neat PA11. POLYM. COMPOS., 37:1415–1424, 2016. © 2014 Society of Plastics Engineers  相似文献   

16.
Rigid poly(vinyl chloride) (PVC)/CaCO3 and PVC/liquid macromolecular modifier (LMM) coated CaCO3 (PVC/LCC) composites were both fabricated by melt mixing. The processability, micro‐structure, dynamic mechanical behavior and mechanical properties of PVC/CaCO3 and PVC/LCC composites were studied by using torque rheometer, scanning electron microscope (SEM), dynamic mechanical analysis (DMA), and universal mechanical testing machine. The results showed that the synergistic effect of LMM and CaCO3 particles accelerated the plasticization of PVC resins. The processability of PVC/LCC composites was improved. The dispersion of LCC in PVC matrix was improved by the modification of CaCO3 particles with LMM. The Tgs of PVC/LCC composites were enhanced by filling with LCC. Because of the synergistic toughening of LMM and CaCO3 particles, the PVC/LCC composites exhibited excellent notched impact properties at the optimum value of LCC particles content. POLYM. COMPOS., 36:1286–1292, 2015. © 2014 Society of Plastics Engineers  相似文献   

17.
The effects of particle size and surface treatment of CaCO3 particles on the microstructure and mechanical properties of poly(vinyl chloride) (PVC) composites filled with CaCO3 particles via a melt blending method were studied by SEM, an AG‐2000 universal material testing machine and an XJU‐2.75 Izod impact strength machine. The tensile and impact strengths of CaCO3/PVC greatly increased with decreasing CaCO3 particle size, which was attributed to increased interfacial contact area and enhanced interfacial adhesion between CaCO3 particles and PVC matrix. Titanate‐treated nano‐CaCO3/PVC composites had superior tensile and impact strengths to untreated or sodium‐stearate‐treated CaCO3/PVC composites. The impact strength of titanate‐treated nano‐CaCO3/PVC composites was 26.3 ± 1.1 kJ m−2, more than three times that of pure PVC materials. The interfacial adhesion between CaCO3 particles and PVC matrix was characterized by the interfacial interaction parameter B and the debonding angle θ, both of which were calculated from the tensile strength of CaCO3/PVC composites. Copyright © 2005 Society of Chemical Industry  相似文献   

18.
Ceramic/polymer composites have great potential to achieve the concomitant enhancement of both dielectric constant and breakdown field while maintaining other superior properties of the polymer matrix, ideal for elastomer sensors, actuators, capacitive energy storage, and many other applications. However, material incompatibility between the ceramic filler and the polymer matrix often leads to void formation, particle aggregation and phase separation, with significantly degraded performance. Herein, through surface modification, co-doped TiO2 particles were uniformly dispersed and bridged onto the silicone rubber matrix via a silane coupling agent for fabricating composites via mechanical mixing and hot-pressing. The synthesized composites exhibit enhanced dielectric constant, increased from 2.78 to 5.06 when 50 wt% co-doped TiO2 particles are incorporated. Their dielectric loss is less than 0.001 in a broad frequency range. Theoretical modelling and experimental results reveal that the morphology and dispersion state of co-doped TiO2 particles were crucial to the dielectric properties of the silicone rubber-based composites. Besides, the composites are thermally stable up to 400 °C. Significantly increased tensile strength (612 kPa) and elongation at break (330%) were obtained for the composite incorporated with 30 wt% co-doped TiO2 particles, accompanied by a moderate increased elastic module (540 kPa). Such composites have the potential for different applications.  相似文献   

19.
《Polymer Composites》2017,38(6):1194-1205
Two staining methods of wood flour/polypropylene composites in an attempt to improve the color stability of wood‐plastic composites (WPCs) were investigated. The first was to dye wood flour (WF) before compounding with polypropylene (PP) to make stained composites. The second method involved mixing pigments directly with WF and PP. Nine groups of composites were weathered in a QUV accelerated weathering tester for 960 h. Their surface color, surface gloss, washing resistance, and flexural properties were tested during weathering. Additionally, the weathered surface was characterized by SEM and ATR‐FTIR. The results revealed that (1) the washing resistance of composites were improved after staining treatments; (2) composites made of dyed WF showed higher surface gloss values and less cracks on weathered surface at the early stage of weathering; while composites containing pigments displayed brighter color, less color change, and less loss of flexural properties during weathering; and (3) weathering resulted in the protrusion of WF and photodegraded lignin on exposed surface. Adding pigments was proven to be more effective staining method for improving composite color stability during weathering. POLYM. COMPOS., 38:1194–1205, 2017. © 2015 Society of Plastics Engineers  相似文献   

20.
Some composites were prepared depending on ethylene vinyl acetate (EVA) copolymer with 18% VA content and titanium dioxide (TiO2). These composites were prepared in the ratios of 100/0, 90/10, 80/20, 70/30, and 60/40 by melt mixing method. Gamma radiation at differing doses was applied on pure EVA and composites to investigate the impact on modification of composites. Gel percentage and the Charlesby‐Pinner equation were used to confirm crosslinking increases. X‐Ray diffraction measurement (XRD), scanning electron microscope (SEM), and mechanical testing were all used to investigate the varying effects of the different processes on the structure, morphology, and mechanical behavior of EVA. It was observed that the addition of TiO2 and gamma irradiation both have a significant effect on the structure and, therefore, the composites' surface morphology. Notable changes of the lattice structure were revealed by the XRD results for both unirradiated and irradiated composites, which were also confirmed by examination of the samples' surface morphology. It was found that the presence and amount of TiO2 along with the irradiation process has a significant influence upon the EVA's mechanical behavior. When compared with the pure EVA, the results demonstrated a significant enhancement in the mechanical parameters of both unirradiated and irradiated composites, except elongation at break. The mechanical results were in line with gel content analysis. The reliability of gamma radiation as an applied method for controlling long‐term properties is clearly demonstrated. J. VINYL ADDIT. TECHNOL., 26:224–235, 2020. © 2019 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号