首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polytetrafluroethylene (PTFE) composites filled with CeO2 were prepared by powder processing technique. The PTFE is used as the matrix and the loading fraction of CeO2 in the composite varied up to 0.6 volume fraction. The thermal conductivity and coefficient of thermal expansion were studied in relation to filler concentration. The thermal conductivity increased and coefficient of thermal expansion decreased with increase in CeO2 content. For 0.6 volume fraction loading of the ceramic, the composite has a thermal conductivity of 3.1 W/m°C and coefficient of thermal expansion 19.6 ppm/°C. Different theoretical approaches have been employed to predict the effective thermal conductivity and coefficient of thermal expansion of composite systems and the results were compared with the experimental data. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
Polyimides with low dielectric constants are important raw materials for the fabrication of flexible printed circuit boards and other microelectronic applications. As creation of voids in polyimide matrix could decrease dielectric constant, in this study mesoporous KIT‐6, synthesized hydrothermally, was functionalized with 3‐aminopropyltriethoxysilane (APTS) and mixed with 4,4′‐oxydianiline (ODA) in the synthesis of terpoly(amic acid) using 3,3′,4,4′‐biphenyldianhydride (BPDA), 3,3′,4,4′‐oxydiphthalic dianhydride (ODPA) and 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (BTDA) and subsequently stage‐cured to obtain APTS‐KIT‐6/Terpolyimide composites (APTS‐KIT‐6/TPI). The asymmetric and symmetric vibrations of imide O?C? N? C?O groups of APTS‐KIT‐6/TPI composites showed their peaks at 1772 and 1713 cm?1. The dielectric constant decreased with the increase in KIT‐6 loading from 2 to 4%, but increased at higher loadings, and at 4% loading it was 1.42. Its tensile strength (103 MPa), tensile modulus (2.5 GPa), and percentage elongation (8.2) and high thermal stability (>540°C) were also adequate for application in microelectronics such as flexible printed circuits. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40508.  相似文献   

3.
Ba–B–Si glass was added to Ba–Nd–Sm–Bi–Ti–O (BRT114) microwave dielectric material for LTCC applications. Conventional one-step processing method for preparing glass-BRT114 composite materials yields low dielectric constant, since the glass was easy to react with BRT114 and forms a low dielectric constant phase, Ba3B6Si2O16. A large proportion of pores appeared. The nature of glass, whether it is sol-gel derived or fused, shows marked influence on the microstructure and microwave dielectric properties of the composites. A two-step process containing precoating the BRT114 powders with a thin layer of glass, followed by conventional samples preparation process, tremendously improved the densification behaviour of the material. The formation of pores and interactions between glass and BRT114 was greatly suppressed such that materials with high dielectric constant (εr=40) were achieved by sintering 9 wt.% glass-containing composite at 950 °C for 2.5 h.  相似文献   

4.
The present work focuses on the microwave synthesis of lactic acid‐grafted‐gum arabic (LA‐g‐GA) by polycondensation reaction and its influence as an additive to improve the gas barrier properties of poly(lactic acid) (PLA) films, prepared by solution casting method. It is observed that during the synthesis of LA‐g‐GA, hydrophilic gum is converted into hydrophobic due to grafting of in situ grown hydrophobic oligo‐(lactic acid). Subsequently, PLA/LA‐g‐GA bionanocomposite films are fabricated and characterized for structural, thermal, mechanical and gas barrier properties. Path breaking reduction in oxygen permeability (OP) of ~10 folds is achieved in case of PLA films containing LA‐g‐GA as filler. However, water vapor transmission rate (WVTR) is reduced up to 27% after 5 wt % addition of filler. Reduction in OP of this order of magnitude enables the PLA to compete with PET in term of enhancing shelf life and maintaining the food quality. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43458.  相似文献   

5.
Epoxy composites incorporating natural components have been mainly limited to the use of natural fibers. However, there have been a few instances where polysaccharides have been used as particulate fillers in thermoset compositions. The present study investigated the effect of guar gum/hydroxypropyl guar gum as a filler on the degradative properties of epoxy composites at various filler concentrations, with reference to fungal degradation and soil burial tests. It was found that at higher filler concentrations, the degradation increased. Composites based on hydroxypropyl guar gum showed increased degradation initially but on prolonged exposure to the fungal environment, the difference between guar gum and the hydroxypropyl guar gum‐based composites was found to be marginal. Microscopic evaluation of the composites showed that the degradation occurred at both the composite surface and in the bulk. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
Guar gum (GG) and hydroxypropyl guar gum (HPG) are widely used in a variety of applications ranging from foods, pharmaceutics to mining and explosives. However, there have been very few studies conducted investigating the use of these materials as fillers in polymer composites. GG and HPG were incorporated in an epoxy matrix and the mechanical properties of the resultant composites were determined. The tensile strength, flexural strength, and impact strength of the composites indicate that they provide reinforcement to the composites upto 5–7.5 phr after which there is a rapid decrease in the respective properties. HPG with higher propoxy content was found to provide greater reinforcement due to its increased hydrophobic nature leading to greater polymer–filler interaction. The nature of the filler required that the water absorption and related tests be carried out. The composites showed increased water absorption and also weight loss on exposure to acid and alkali environments, with HPGs showing greater variations when compared with GG, making the composites susceptible to moisture. The study shows that these fillers make an inexpensive, eco‐friendly, and renewable addition to conventional organic and inorganic fillers where the composites do not come into immediate contact with water. POLYM. ENG. SCI., 48:124–132, 2008. © 2007 Society of Plastics Engineers  相似文献   

7.
The conducting polymer composite material is desired to have a high dielectric constant and high dissipation factor in low and high frequency ranges, so that it can be used in charge storing devices, decoupling capacitors, and electromagnetic interference (EMI) shielding applications. Currently, on‐going research is trying to enhance the dielectric constant of ceramic powder‐polymer, metal powder‐polymer, and nanotube‐polymer composites in the low frequency region. In this article, we present the dielectric properties of polypropylene (PP)‐graphite (Gr) composites in low and radio frequency ranges. Furthermore, the EMI shielding properties of these composites are examined in the radio frequency range. The PP‐Gr composites were prepared by mixing and the hot compression mold technique. The electrical conductivity and dielectric constant of PP‐Gr composites with graphite volume fraction follow the power law model of percolation theory. The percolation threshold of the composites is estimated to be 0.0257 (~ 5wt % of Gr). The current of PP‐Gr composites as a function of voltage shows a nearly ohmic behavior above the percolation threshold. Shore‐D hardness of the composites is decreased with the addition of conducting filler. The PP‐Gr composites exhibit a high dielectric constant and high dissipation factor with the addition of graphite in low frequency and radio frequency regions, so they can be used in the proposed applications. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
Composites with multi‐walled carbon nanotubes (MWNTs) involved in polyamide 11 (PA11) were prepared via a conventional melt blending method. The structure, morphology, crystallization behavior, electrical, and dielectric properties of composites were investigated. The results demonstrated that the dispersed uniformly MWNTs favored the formation of α crystal of PA11 when the composites were quenched from melt. The dielectric constant of composites was dependent on the electric field frequency and MWNTs content, and the highest value of dielectric constant was as high as 350 for the composite with 1.21 vol % MWNTs at 103 Hz, accompanied by a low dielectric loss. The enhanced dielectric properties could be interpreted by the formation of abundant nanocapacitors within the composites and the interfacial polarization effect resulting from accumulation of charge carriers at the internal interfaces between MWNTs and PA11. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42642.  相似文献   

9.
10.
Composites of polyvinylidene fluoride (PVDF) filled with different conductive fillers as carbon black (CB), nickel (Ni), zinc (Zn), and tungsten (W), respectively, were prepared at same processing condition. The temperature dependence of dielectric behaviors of composites was studied at wide filler concentration and wide frequency ranges. Results show that there are giant dielectric constants as the concentration of filler is near the percolation threshold. The dielectric constants of all studied composites decrease slowly with increasing of frequency and rise gradually with increasing filler contents in the composites. Two relaxation peak regions of dielectric constant are observed from ?30 to 40°C and from 100 to 150°C, which can be attributed to the contribution of polar effect of PVDF. The CB filled PVDF (CB/PVDF) composites present a lower percolation threshold than other metallic‐filler filled PVDF composites. The maximal dielectric constant was found in the Ni filled PVDF (Ni/PVDF) composite. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
We measured complex dielectric permittivity using THz time-domain spectroscopy (THz-TDS) to clarify the dielectric properties of oxide materials in a frequency range from GHz to THz. Piezoelectric and ferromagnetic oxide single crystals, such as quartz (SiO2), zinc oxide (ZnO), Bi substituted rear-earth iron garnet (BiRIG), and LiTaO3 (LT), were used. We obtained the complex dielectric permittivity of these materials in a frequency range from 100 GHz to 2 THz. The ɛ′ and ɛ″ obtained for SiO2 were in agreement with previous reports. We observed dielectric relaxation in ZnO crystal from 100 GHz to 1 THz, which originated from n-type conductivity. In the BiRIG, the values of the dielectric permittivity increased as the frequency increased, and the values of the dielectric permittivity with the magnetic field were smaller than those without the magnetic field throughout the measured frequency range. In a comparison between congruent LiTaO3 (CLT) and stoichiometric LiTaO3 (SLT), the ɛ33 of the CLT was very similar to that of the SLT, but a lot of difference was between the ɛ11 of evident CLT and SLT within the measured frequency region. We determined that the point defects had profound effect on the dielectric performance of the LT.  相似文献   

12.
Modification of nanoparticles through graft polymerization is able to change the chemical nature of the particles' surfaces and provides an effective means for the preparation of nano‐fillers specified for composites manufacturing. The present work focuses on the mechanical role of grafted nano‐SiO2 particles in high density polyethylene composites prepared by melt compounding. The experimental results show that at a content of 0.75 vol%, the modified nano‐silica results in a rise in tensile stiffness, tensile strength and impact strength of the composites. The grafted nanoparticles can improve the mechanical performance of the matrix polymer more effectively than the untreated version. In addition, a further enhancement of the composites stiffness and strength can be achieved by crosslinking the concentrated masterbatches, which has not yet been revealed in the authors' previous works on grafted nano‐SiO2 particles/polypropylene composites. It is thus revealed that the introduction of the grafting polymers onto the nanoparticles increases the tailorability of the composites.  相似文献   

13.
Many applications in wireless communication, microelectronics, and microwave power engineering rely on dielectrics with particular dielectric properties. This article proposes an original approach that can be used for producing materials with required complex permittivity. The technique is based on an inverted power‐law mixing rule model computing volume fractions in which three or more prime materials should be taken to get in the resulting homogeneous mixture the required dielectric properties. Functionality of the approach is demonstrated by production of composites from a polymer matrix (polymethyl methacrylate) and two inorganic fillers (silicon and alumina). The composites are made by mechanically mixing the powders and axially hot‐pressing and cooling the mixture. Complex permittivity of the samples is measured by a split‐post resonator method. Experimental data on dielectric properties of the samples help calibrate the technique; for the used powders, the Looyenga power‐law model is found to be most adequate. In the produced samples, the target values of dielectric constant are reached with a higher precision than the ones of the loss factor; however, analysis of the production process and error propagation in the computations suggest that deviations of the resultant complex permittivity fall in the anticipated ranges. Features and issues of both computational and production parts of the technique are finally discussed. POLYM. ENG. SCI., 58:319–326, 2018. © 2017 Society of Plastics Engineers  相似文献   

14.
The possibility of obtaining relatively high thermal conductivity and dielectric constant but low dielectric loss polymeric composites by incorporating the core‐shell‐structured aluminum (Al) particles in a linear low‐density polyethylene (LLDPE) by melt mixing and hot pressing was demonstrated in this study. The morphology, thermal and dielectric properties of the composites were characterized using X‐ray diffractions, thermal analysis, scanning electron microscope, and dielectric analyzer. The Al particle decreases the degree of crystallinity and has no appreciable influence on the melting temperature of LLDPE. The thermal conductivity, dielectric constant and loss factor of the composites increase with an increase in Al content at all the frequencies (1 ~ 106 Hz). The thermal conductivity and dielectric constant of the 70 wt% flaky Al particles filled LLDPE are 1.63 W/mK and 50, much higher than those of the spherical Al reinforced one. Moreover, the surface treatment of Al particles with γ‐Aminopropyltriethoxysilane silane coupler improves the thermal conductivity. The dielectric loss factors of the composites still remain at relatively low levels in the measured frequency range. Further, the dielectric permittivity frequency independence in the measured frequency range was observed due to the nanoscale‐Al‐oxide insulating shell of Al. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

15.
Electromagnetic shielding materials are widely used in alternating electric fields. As a result, the alternating current (AC) conductivity is vital to the electromagnetic shielding effectiveness. In this article, we designed a kind of test method about powder conductive properties and studied AC conductivity of silver powder and the silicon rubber composite, which presented that a sharp peak of impedance would take place in the both systems during the high frequent electric flow. Through the design of the equivalent circuit and the test of the system parameters such as the dielectric constant, this article displayed the impedance model of the silver powder and the silicon rubber composite. The calculated results and the experimental data match very well. POLYM. COMPOS. 37:1122–1127, 2016. © 2014 Society of Plastics Engineers  相似文献   

16.
Nystatin, a polyene tetraene antibiotic widely used in the treatment of mycoses, was coupled with oxidized polysaccharide gum Arabic, by forming Schiff base structures between amine groups of antibiotics and aldehyde groups of modified carbohydrate. Imine conjugates synthesized in this way were reduced with sodium borohydride to secondary amines. Two imine and two amine conjugates were obtained with different nystatin content. The conjugates were characterized by UV–Vis, FTIR, 1H NMR spectroscopy, and thermogravimetric analysis. Solubility in water, unlike nystatin, and significant activity against Candida albicans and Aspergillus niger with minimum inhibitory concentrations in range of 3.125–6.25 μg mL?1 and 6.25–25 μg mL?1, respectively, indicate that the chemical integrity and the biological function of these compounds were retained. A comparison of stability of the conjugates in the dry form, solution and under different pH values showed that the conjugates exhibited better stability than pure drug. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
PTFE-based microwave composites filled with bismuth-based pyrochlore dielectric ceramics were prepared by using the powder processing technology. The effect of ceramic powder content on dielectric properties was studied. The relative permittivity was also predicted using percolation theory. The results indicated that as the content of ceramic powder increased, both the relative permittivity and dielectric loss of composites increased, showing excellent frequency in a wide spectral range. The theoretical result predicted by percolation theory is in good agreement with the experimental data.  相似文献   

18.
Polyimides are used in microelectronics as they possess the essential high tensile properties, high thermal stability and low dielectric constant. As the further reduction in their dielectric constant is indispensable for such applications, in this study it was loaded with the porous covalent organic framework (COF‐LZU‐1) to obtain COF‐LZU‐1/terpolyimide composites. The composites can capture much air (κ = 1) in their matrix and bring down the dielectric constant below the virgin polyimides. In the beginning, the terpoly(amic acid)s were prepared, then loaded with the COF‐LZU‐1, and subsequently, stage cured up to 350°C to obtain COF‐LZU‐1/terpolyimide composites. Their thermal degradation occurred close to 530°C, illustrating high thermal stability. Their dielectric constant decreased with an increase in the COF‐LZU‐1 loading from 1 to 4%. The lowest dielectric constant of 1.36 was obtained with 4% loading. So, COF‐LZU‐1 and different polyimides can be suitably combined to obtain composites with desirable characteristics for applications in microelectronics. POLYM. ENG. SCI., 59:814–820, 2019. © 2018 Society of Plastics Engineers  相似文献   

19.
The kinetic characteristics of microwave‐assisted pyrolysis (MAP) of biomass components were investigated in a self‐designed microwave thermogravimetric analysis using the KAS model and the master plot method. Compared with conventional pyrolysis, the initial decomposition temperatures of biomass components were reduced by 50–100°C and the fastest weight loss regions were shifted to lower temperatures. The average apparent activation energies of cellulose, hemicellulose, and lignin were 47.82, 44.81, and 51.54 kJ/mol, respectively. Analysis with master plot method suggested the MAP of cellulose followed the 2‐D diffusion reaction model, while hemicellulose and lignin could be interpreted by third order‐based and 3‐D diffusion model. The change of dielectric properties was consistent with the weight loss behaviors of biomass components during the pyrolysis process. The increase of dielectric properties with temperature can lead to a thermal gradient and “hot spots” within biomass, which accelerated the pyrolysis process at low temperatures and reduced the apparent activation energy. © 2018 American Institute of Chemical Engineers AIChE J, 64: 2124–2134, 2018  相似文献   

20.
This study presents a novel and simple modification of cladding multiwalled carbon nanotubes (MWCNTs) using organic polymer and inorganic nanoparticles to synthesize a product, which has a double‐cladding coaxial structure and can be applied as filler in the dielectric field. The first layer of MWCNTs was coated with polyaniline (PANI) through the oxidation–reduction reaction mechanism using Ce(NH4)2(NO3)6 as oxidizing agent and metal precursor of cerium oxide. Cerium ions on the second cladding layer of MWCNTs were directly deposited from the solution to the surface of the PANI layer forming the double‐cladding hybrid (CeO2/PANI@MWCNTs). The external inorganic layer provides an insulating shell, which can prevent the contact between the conductive particles and hinder the migration of electrons between the MWCNTs. The intermediate layer of PANI provides the bonding between CeO2 and the conductive core of MWCNTs, which also shows lower conductivity than carbon nanotubes. The CeO2/PANI@MWCNTs were compounded with epoxy (EP) resin and formed a dielectric material with the advantage of reducing dielectric loss while ensuring high dielectric constant. The dielectric constant of the coated MWCNTs/EP composites was 194.90 at 103 Hz with the content of fillers reaching 30 wt %, which is 28 times that of the pure EP. Accordingly, the dielectric loss of 30 wt % coated MWCNTs/EP composites was only 0.09 at 103 Hz, which is only 2.25 times that of the pure EP. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46299.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号