首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A poly(amic acid) was prepared through the reaction of 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride and 2,2′‐bis(trifluoromethyl) benzidine in N,N‐dimethylacetamide. Hybrid films were obtained from blend solutions of the precursor polymer and the organoclay dodecyltriphenylphosphonium–mica, with the organoclay content varying from 0 to 1.0 wt %. The cast films of poly(amic acid) were heat‐treated at different temperatures to create polyimide (PI) hybrid films. These PI hybrid films showed excellent optical transparency and were almost colorless. The intercalation of PI chains in the organoclay was examined with wide‐angle X‐ray diffraction and electron microscopy. In addition, the thermomechanical properties were tested with differential scanning calorimetry and thermogravimetric analysis, and the gas permeability was determined. The addition of only a small amount of the organoclay was sufficient to improve the thermal and mechanical properties of the PI, with the maximum enhancement being observed with 0.5 wt % organoclay. However, the water vapor permeability decreased with the clay loading increasing from 0 to 0.5 wt %. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

2.
The influence of silane (bis[3‐triethoxysilylpropyl] tetrasulfide) coupling agent on the properties of ethylene‐propylene‐diene monomer rubber (EPDM)/mica composites was studied. Both EPDM/mica composites with silane and those without silane were compounded by using a two‐roll mill at various filler loadings (i.e., 100/0, 100/10, 100/30, 100/50, 100/70). The tensile and thermal properties as well as the fracture surfaces of the composites were investigated by using an Instron Universal Testing Machine, a thermal gravimetric analyzer, and a field emission scanning electron microscope. The results indicated that the optimum cure time (t90) and scorch time (ts2) values were shorter, whereas the maximum torque (MH) value was slightly higher, for EPDM/mica composites with silane compared to those without silane. The tensile properties, modulus at 100% elongation, and modulus at 300% elongation increased for the composites made with silane, and the optimum filler loading for those properties was 50 parts by weight per hundred parts of rubber. In addition, thermal stability and swelling ratio for both composites improved with increased filler loading. However, the composites with silane showed better thermal stability and swelling ratio because of stronger linkage at the rubber‐filler boundary, which promoted filler dispersion. J. VINYL ADDIT. TECHNOL., 20:116–121, 2014. © 2014 Society of Plastics Engineers  相似文献   

3.
Polyimide (PI)/organoclay hybrid films were prepared by the solution intercalation method, using dodecyltriphenylphosphonium‐mica (C12PPh‐Mica) as the organoclay. The variations with organoclay content of the thermomechanical properties, morphology, and optical transparency of the hybrids were examined for concentrations from 0 to 1.0 wt %. For low clay contents (≤ 0.5 wt %), the clay particles are better dispersed in the matrix polymer, without the formation of large agglomerates of particles, than they are for high clay contents. However, agglomerated structures form and become denser in the PI matrix for clay contents ≥ 0.75 wt %. This is in agreement with the observed trends in the thermomechanical properties and the optical transparency, which worsen drastically when the clay content of the C12PPh‐Mica/PI hybrids reaches 0.75 wt %. However, when the amount of organoclay in the hybrid is 0.75 wt %, the initial modulus of the hybrid film is at its maximum value. The PI hybrid films were found to exhibit excellent optical transparencies and to be almost colorless. It was found, however, that the transparency decreases slightly with increases in the organoclay content because of agglomeration of the clay particles. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
This study reports the glass transition temperature (Tg), and sorption and diffusion of subcritical CO2 gas in polymethyl methacrylate (PMMA) nanocomposites containing organically modified smectite clay, Cloisite 20A (C20A). A range of methods for preparing the PMMA‐clay nanocomposites was investigated and a solution coprecipitation method was selected as the most appropriate. Using this method, PMMA nanocomposite containing 2, 4, 6, and 10 wt% nanoclay loadings were prepared. Wide‐angle X‐ray diffraction (XRD) analysis and scanning electron microscopy (SEM) indicated that the 2 wt% nanocomposite materials had a well‐dispersed intercalated clay structure. The Tg for PMMA‐C20A nanocomposites, as measured by differential scanning calorimetry (DSC), was found to be independent of the clay loading. CO2 solubility studies from 0 to 65°C and pressures up to 5.5 MPa using an in situ gravimetric technique were performed on compression‐molded films. The organoclay was found to have no effect on the solubility of CO2 in PMMA, and therefore the solubility of CO2 in the nanocomposite can be determined from the solubility of CO2 in the matrix polymer alone. Diffusion coefficients were determined using the appropriate transport models for these test conditions and the diffusion coefficients for CO2 in PMMA‐C20A composites were found to increase with organoclay loading. It is believed that the processing path taken to prepare the nanocomposites may have resulted in the agglomeration of the C20A organoclay, thereby preventing the polymer chains from fully wetting and intercalating a large number of clay particles. These agglomerations are responsible for the formation of large‐scale holes within the glassy nanocomposite, which behave as low resistance pathways for gas transport within the PMMA matrix. POLYM. ENG. SCI., 45:904–914, 2005. © 2005 Society of Plastics Engineers  相似文献   

5.
New type of nanocomposites containing various proportions of montmorillonite in aromatic polyamide was prepared via solution intercalation method. Aramid chains were synthesized by reacting 4,4′‐oxydianiline with isophthaloyl chloride in N,N′‐dimethyl acetamide. Dodecylamine was used as swelling agent to change the hydrophilic nature of montmorillonite into organophilic. Appropriate amounts of organoclay were mixed in the polymer solution using high‐speed mixer for complete dispersion of the clay. Thin films cast from these materials after evaporating the solvent were characterized by XRD, TEM, mechanical, thermal, and water absorption measurements. The structure and morphology of the nanocomposites determined by XRD and TEM revealed the formation of exfoliated and intercalated clay platelets in the aramid matrix. Mechanical data indicated improvement in the tensile strength and modulus of the nanocomposites with clay loading up to 6 wt%. The glass transition temperature increased up to 12 wt% clay content and thermal stability amplified with increasing clay loading. The water absorption reduced gradually as a function of organoclay and approached to zero with 20 wt% organoclay in the aramid. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

6.
Poly(butylene succinate) (PBS)/(ethylene acrylic acid) (EAA)/organoclay nanocomposites were prepared by using the melt intercalation technique. EAA was used as compatibilizer and organoclay was used as inorganic filler. X‐ray diffraction and transmission electron microscopy results indicated the addition of compatibilizer led to a large increase in basal spacing of nanocomposites and better overall dispersion of organoclay in the PBS matrix. However, the basal spacing was found to be invariant as the organoclay content increased. The differential scanning calorimetry analyses revealed that the incorporation of the organoclay and EAA and the variation of organoclay content altered the melting behavior and crystallization properties of PBS. Storage and loss modulus of virgin matrix increased with the incorporation of organoclay and EAA, and a maximum for the nanocomposite with 9 wt% organoclay. Moreover, the glass transition temperatures also increased for the various organoclay‐containing samples. Mechanical properties showed an increase with the incorporation of organoclay and EAA. The 5 wt% organoclay‐filled PBS gave the highest tensile strength and notched Izod impact strength among all the composites. Further increments in organoclay loading reduced the tensile strength and notched impact strength of nanocomposites, which was thought to be the result of agglomeration. However, increments in clay loading enhanced the flexural strength and flexural modulus of nanocomposites, with a maximum at 9 wt% organoclay. J. VINYL ADDIT. TECHNOL., 23:219–227, 2017. © 2015 Society of Plastics Engineers  相似文献   

7.
Mica fillers reinforced polyetheretherketone (PEEK) composites were fabricated using compression molding technique. To improve embedding of the mica within the PEEK matrix, the mica surface was chemically modified using vinyl trimethoxysilane (VTMO), at variable concentration (0–1.5 wt%). The performance characteristics and treated mica PEEK at mica loading of 20 wt% composites were examined in terms of scanning electron microscopy, dynamic mechanical thermal analysis, and modulated differential scanning calorimetry. The tensile strength and modulus improved to the tune of 81 and 44% with treated mica‐filled PEEK composites. Mechanical tests revealed improved properties of VTMO‐treated mica/PEEK composites, which confirmed improved interfacial adhesion with chemical treatment. The increment of the dynamic modulus for the treated mica PEEK composites was also noticed to 82% as compared with untreated counterpart, at elevated temperatures of 250°C, indicating apparent improvement of high‐temperature mechanical properties. POLYM. COMPOS., 31:2121–2128, 2010. © 2010 Society of Plastics Engineers  相似文献   

8.
A series of nanocomposites of poly(ethylene terephthalate) (PET) with the organoclay dodecyltriphenylphosphonium‐mica (C12PPh‐mica) were synthesized with the in situ polymerization method. PET hybrid fibers with various organoclay concentrations were melt‐spun at various draw ratios (DRs) to produce monofilaments. The thermomechanical properties and morphologies of the PET hybrid fibers were characterized with differential scanning calorimetry, thermogravimetric analysis, wide‐angle X‐ray diffraction, electron microscopy, and universal tensile analysis. The organoclay was intercalated in the polymer matrix at all magnification levels, and some of the agglomerated organoclay layers were greater than 50 nm thick. The thermal stabilities and initial tensile moduli of the hybrid fibers increased with an increasing clay content for DR = 1. For DR = 1, the ultimate tensile strengths of the PET hybrid fibers increased with the addition of clay up to a critical clay loading and then decreased above that critical concentration. However, the tensile mechanical properties of the hybrid fibers did not improve with increasing DR. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2009–2016, 2005  相似文献   

9.
Montmorillonite (MMT)‐based polyimide (PI) nanocomposites were prepared via two‐stage polymerization of PI using polyamic acid (PAA). The clay was organically modified using various alkylammonium ions to examine the effect of changes in alkyl length on the intercalation spacing of both the treated clays and their hybrids with PAA and PI. The intercalation behavior of clay in the PI matrix and its thermal and mechanical properties were investigated as a function of clay concentration. The d‐spacing of organically modified MMT (O‐MMT) increased with increasing length of the alkylammonium chain. PI/O‐MMT hybrids form exfoliated nanocomposites at clay concentrations below 2 wt%, while they form intercalated nanocomposites together with some exfoliated ones at clay contents exceeding 4 wt%. Young's modulus increased rapidly to a clay loading of 2 wt%, and leveled off with further increases in clay loading. The tensile strength at break increased rapidly up to a clay loading of 1 wt%, and then decreased sharply, while the strain at break showed a monotonic decrease with increasing clay loading from 0 to 8 wt%. The storage modulus, E′, in the temperature range below the glass transition temperature Tg, generally increased with increasing clay content, except at the highest clay content of 8 wt%. Copyright © 2004 Society of Chemical Industry  相似文献   

10.
A poly(amic acid) was prepared by the reaction of 3,3′‐dihydroxybenzidine and pyromellitic dianhydride in N,N‐dimethylacetamide. Hexadecylamine was used as an organophilic alkylamine in organoclay. Cast films were obtained from blend solutions of the precursor polymer and the organoclay. The cast film was heat treated at different temperatures to create polyimide (PI) hybrid films. We set out to clarify the intercalation of PI chains to hexadecylamine–montmorillonite (C16–MMT) and to improve thermal and tensile properties and the gas barrier. It was found that the addition of only a small amount of organoclay was enough to improve both the thermal and the mechanical properties of PIs. Maximum enhancement in the ultimate tensile strength for PI hybrids was observed for the blends containing 4% C16–MMT. The initial modulus monotonically increased with further increases in C16–MMT content. Water vapor permeability was decreased with increasing clay loading from 1 to 8 wt %. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2294–2301, 2002  相似文献   

11.
2,7‐Bis(4‐aminophenoxy) naphthalene (BAPN), a naphthalene‐containing diamine, was synthesized and polymerized with a 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride (BTDA) to obtain a polyimide (PI) via thermal imidization. To enhance the thermal and mechanical properties of the polymer, PI–Montmorillonite (MMT) nanocomposites were prepared from a DMAc solution of poly(amic acid) and a DMAc dispersion of MMT, which were organo‐modified with various amounts of n‐dodecylamine (DOA) or cetylpyridium chloride (CPC). FTIR, XRD, and TEM (transmission electron microscopy) were used to verify the incorporation of the modifying agents into the clay structure and the intercalation of the organoclay into the PI matrix. Results demonstrated that the introduction of a small amount of MMT (up to 5%) led to the improvement in thermal stability and mechanical properties of PI. The decomposition temperature of 5% weight loss (Td,5%) in N2 was increased by 46 and 36°C in comparison with pristine PI for the organoclay content of 5% with DOA and CPC, respectively. The nanocomposites were simultaneously strengthened and toughened. The dielectric constant, CTE, and water absorption were decreased. However, at higher organoclay contents (5–10%), these properties were reduced because the organoclay was poorly dispersed and resulted in aggregate formation. The effects of different organo‐modifiers on the properties of PI–MMT nanocomposite were also studied; the results showed that DOA was comparable with CPC. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

12.
This study thoroughly studied the implements of fluorosilane modified graphene oxide (GO) on the mechanical, thermal, and water absorption properties of the epoxy composites built up by specific content of modified GO. Fluorosilane graphene oxide (GOSiF) was analyzed using Fourier transform infrared spectroscopy, thermogravimetric analysis, Raman spectroscopy, X‐ray photoelectron spectroscopy, and X‐ray diffractometer. The epoxy composites tensile and bending modulus were increased by 11.46% and 62.25% with 0.1 and 0.5 wt% GOSiF loading, respectively. The good interfacial interaction was observed between epoxy matrix and GOSiF nanosheets under scanning electron microscopy. The thermal stability increases with GOSiF loading. Epoxy composite with 0.3 wt% GOSiF shows 5 °C increases in the T10%. The residual weight raised by 58.67% with 0.3 wt% GOSiF content. The water absorption study revealed small water uptake was obtained for all GOSiF composites. With 0.3 wt% loading of GOSiF, the maximum water content drops from 4.97% for neat epoxy to 1.98%. POLYM. ENG. SCI., 59:1250–1257 2019. © 2019 Society of Plastics Engineers  相似文献   

13.
Hybrid composites based on poly(ether‐ether‐ketone) (PEEK) were fabricated with fly ash and mica. Nearly 5, 10, and 15 wt% of fly ash were replaced by mica of the optimized fly ash reinforced composites and were subjected to dynamical mechanical analysis to determine the dynamic properties as a function of temperature. The storage modulus E′ was found to decrease with the increase of weight fraction of mica. Loss modulus was also found to decrease with loading while the damping property was found to increase marginally. Peak height of tan δ for hybrid composites were decreased by varying combinations of fly ash with mica. It is probably due to improved crystallinity of PEEK and strong interaction between the fillers and PEEK matrix. Cole–Cole analysis was made to understand the phase behavior of the composite samples. Kubat parameter was calculated to study the adhesion between matrix and filler of the fabricated composites. Without surface modification for inorganic fillers, the distribution of two different shape filler particles appears to be reasonably uniform. The use and limitation of various theoretical equations to predict the tan δ and storage modulus of filler reinforced composites have been discussed. Addition of both fillers opens up new opportunities for development of high‐performance multifunctional materials suitable for industrial applications. Scanning electron micrographs of tensile fracture surfaces of composites demonstrated filler–matrix bonding. POLYM. COMPOS., 35:68–78, 2014. © 2013 Society of Plastics Engineers  相似文献   

14.
Clay was modified by trimethylchlorosilane; after modification, hydroxyl groups at the edge of layers were reacted and CEC value was drastically decreased. Polyethylene–clay composites were prepared by melt compounding. Wide angle X‐ray diffraction (WAXD) and transmission electron microscopy (TEM) showed that intercalated nanocomposites were formed using organoclay ion‐exchanged from chlorosilane‐modified clay, but conventional composites formed using organoclay directly ion‐exchanged from crude clay. Dynamic mechanical analysis (DMA) of PE and PE–clay composites was conducted; the results demonstrated that nanocomposites were more effective than conventional composites in reinforcement and addition of organoclay resulted in the increase of glass transition temperature (Tg), but crude clay had no effect on Tg of PE–clay composites. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 676–680, 2004  相似文献   

15.
Tensile properties and Izod impact strength of mica‐filled composites of poly(butylene terephthlate) (PBT)/polyacrylonitrile‐butyl acrylate‐styrene (ABAS) were studied at mica concentration range 0 to 0.14 volume fraction, (?f). Tensile properties such as tensile modulus, strength, and breaking strain were normalized by dividing the data with the crystallinity (%) of the major component PBT in the composites and the matrix blends. The normalized relative tensile properties were compared with simple models to evaluate the interphase interactions between the matrix (i.e. PBT/ABAS blend) and the dispersed phase mica. Mica reinforced the blend increasing the tensile modulus and strength with mica concentration while the strain‐at‐break was increased marginally up to ?f = 0.04 and decreased beyond this ?f. The impact strength, however, decreased with increase in ?f due to enhanced matrix stiffening and lack of plastic deformation of the matrix. Scanning electron microscopic studies revealed good dispersion of mica in the composites. The effect of surface treatment with a zirconate coupling agent, NZ‐97, on the above properties has also been examined. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
Polyimide/mica (PI/mica) hybrid films were prepared from pyromellitic dianhydride/4,4-bis(3-aminophenoxy)biphenyl (PMDA/4,3-BAPOBP) and mica in a solution of N,N-dimethylacetamide. The structure–property relationships of the composites were studied by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, ultraviolet–visible spectroscopy and differential scanning calorimetry. FTIR indicated successful preparation of PI/mica hybrid films. XRD and SEM results indicated that the mica was well dispersed in the PI matrix. The dependence of morphology, glass transition temperatures (Tg), dielectric properties and mechanical properties at room temperature of the hybrid films on the content of mica was discussed. It was observed that Tg, the breakdown strength and tensile strength of the hybrid films, could be simultaneously increased when the mica content was lower than 8?wt-%. Meanwhile, the dielectric constant and dielectric loss of PI/mica hybrid films increased with the increase in the mica content.  相似文献   

17.
In this study, amorphous poly(ethylene terephthalate‐co‐1,3/1,4‐cyclohexylenedimethylene terephthalate) (PETG)/organoclay nanocomposites was synthesized by the in situ intercalation polymerization of terephthalic acid, ethylene glycol, 1,3/1,4‐cyclohexanedimethanol, and organoclay. The organoclay was obtained by modifying sodium montmorillonite (clay) with hexadecyl triphenylphosphonium bromide. The thermal, mechanical, optical, and gas barrier properties of these PETG nanocomposites with various organoclay contents (0–3 wt%) were discussed. The differential scanning calorimetry and X‐ray analyses revealed that all of the nanocomposites were amorphous. X‐ray diffraction and transmission electron micrographs showed that the organoclay was well dispersed in the polymer matrix, although some parts of the agglomerated layers remained on the scale of several hundreds of nanometers. The thermal stability and the mechanical property of the nanocomposites increased with organoclay content. The optical transmittances of nanocomposites that contained 0.5, 1, and 3 wt% of organoclay were 86.8%, 84.4%, and 77.4%, respectively. The oxygen transmission rate of the nanocomposite that contained 3 wt% of organoclay was about 50% of the PETG base polymer. POLYM. COMPOS., 2011. © 2010 Society of Plastics Engineers  相似文献   

18.
Ultrahigh molecular weight polyethylene (UHMWPE) nanocomposites with various organoclay contents were prepared by using the solution intercalation method. Up to a clay loading of 4 wt%, the clay particles were found to be highly dispersed in the UHMWPE matrix without any agglomeration of particles. However, for a clay content above 6 wt% some agglomerated structures form in the polymer matrix. The melting transition temperatures (Tms) and ultimate strengths of the hybrids increase with increasing clay content; the maximum values of these properties were obtained for the hybrid containing 2 wt% of the organoclay. However, the thermal degradation stability and initial modulus are at their maximum values when the amount of organoclay in the hybrid is 4 wt%. The oxygen permeability, coefficient of thermal expansion (CTE), and transmittance at 400 nm were found to monotonically decrease with increases in the clay loading in the range 0 to 10 wt%. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers  相似文献   

19.
Biobased nanocomposites and composite fibers were prepared from organosolv lignin/organoclay mixtures by mechanical mixing and subsequent melt intercalation. Two organically‐modified montmorillonite (MMT) clays with different ammonium cations were used. The effect of organoclay varying from 1 to 10 wt % on the mechanical and thermal properties of the nanocomposites was studied. Thermal analysis revealed an increased in Tg for the nanocomposites as compared with the original organosolv lignin. For both organoclays, lignin intercalation into the silicate layers was observed using X‐ray diffraction (XRD). The intercalated hybrids exhibited a substantial increase in tensile strength and melt processability. In the case of organoclay Cloisite 30B, X‐ray analysis indicates the possibility of complete exfoliation at 1 wt % organoclay loading. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
The present study was carried out to determine the filler characteristics and to investigate the effects of three types of mineral fillers (CaCO3, silica, and mica) and filler loadings (10–40 wt%) on the properties of polypropylene (PP) composites. The characteristics of the particulate fillers, such as mean particle size, particle size distribution, aspect ratio, shape, and degree of crystallinity were identified. In terms of mechanical properties, for all of the filled PP composites, Young's modulus increased, whereas tensile strength and strain at break decreased as the filler loading increased. However, 10 wt% of mica in a PP composite showed a tensile strength comparable with that of unfilled PP. Greater tensile strength of mica/PP composites compared to that of the other composites was observed because of lower percentages of voids and a higher aspect ratio of the filler. Mica/PP also exhibited a lower coefficient of thermal expansion (CTE) compared to that of the other composites. This difference was due to a lower degree of crystallinity of the filler and the CTE value of the mica filler. Scanning electron microscopy was used to examine the structure of fracture surfaces, and there was a gradual change in tensile fracture behavior from ductile to brittle as the filler loading increased. The nucleating ability of the fillers was studied with differential scanning calorimetry, and a drop in crystallinity of the composites was observed with the addition of mineral filler. Studies on the hybridization effect of different (silica and mica) filler ratios on the properties of PP hybrid composites showed that the addition of mica to silica‐PP composites enhanced their tensile strength and modulus. J. VINYL ADDIT. TECHNOL., 2009. © 2009 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号