首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了提高行波保护的灵敏性与可靠性,提出了一种基于初始电流行波相位比较的快速母线保护新算法。基于S变换计算初始行波相量,通过分析母线各条关联线路上的初始电流行波相位构建保护判据。当母线内部故障时,各条关联线路初始电流行波相位近乎相同;而母线外部故障时,故障线路与非故障线路的初始电流行波相位存在较大差异。引入电流行波相位差概念,通过比较电流行波相位差与整定值的大小识别母线区内外故障。大量实验仿真结果表明,该保护性能灵敏、可靠,动作速度快,判据简单,基本不受故障初始角、故障类型和过渡电阻等因素的影响。  相似文献   

2.
为提高行波保护的灵敏性和可靠性,提出一种基于初始电流行波相位比较的同杆双回线路快速保护新算法。基于S变换计算初始行波相位,通过分析同杆双回线路同端和对端上的初始电流行波相位关系构建保护判据。当内部单回线故障时,双回线路同一侧上电流行波相位近乎相反;内部同名相跨线接地故障时,线路同一侧上的电流行波相位近乎相同,同一条线路两端的电流行波相位近乎相同;区外故障时,两条线路同一侧的电流行波相位近乎相同,同一条线路两端的电流行波相位近乎相反。引入行波相位差的概念,通过分析电流行波相位差的变化特征识别同杆双回线路区内外故障。大量的仿真结果表明,该保护性能灵敏、可靠,动作速度快,判据简单,基本不受故障初始角、故障类型和过渡电阻等因素影响。  相似文献   

3.
《高压电器》2016,(1):42-49
在分析线路两端故障行波关系特征的基础上,提出了一种基于故障电压方向行波能量比较的纵联保护新算法。该算法基于S变换,提取单频率电压方向行波能量,利用线路一侧电压反行波能量与另一侧电压前行波能量的比值构成保护判据。当被保护线路区外故障时,上述能量比值较小,趋近于1;而被保护线路内部故障时,该能量比值很大,能够明显地区分出线路内外部故障。文中对保护的原理判据和影响行波纵联保护的主要因素分别进行了仿真分析,仿真结果表明,所提出的纵联保护算法在小故障初始角下仍能准确识别区内外故障,动作速度快,可靠性高,且不受故障位置、故障类型、过渡电阻和母线结构等因素影响。  相似文献   

4.
基于S变换的新型波阻抗方向继电器   总被引:4,自引:0,他引:4  
为提高行波保护的灵敏性与可靠性,提出一种基于S变换的新型波阻抗方向继电器。通过对正方向线路故障后初始行波特征的分析,定义方向继电器的背侧母线波阻抗。依据该阻抗及继电器正方线路波阻抗分别设置正、反方向阻抗圆,构成双阻抗圆的方向判据。利用 S 变换提取单频率的电压、电流初始行波,并计算出波阻抗,根据该阻抗在正、反方向阻抗圆内的位置判别故障方向。PSCAD/EMTDC 仿真结果表明:该继电器能可靠、灵敏、超高速识别正反方向故障,其性能受故障初始角、故障距离、故障电阻等因素的影响小,能适应母线结构的变化。以该继电器构成的超高速方向纵联保护具有良好的工程应用前景。  相似文献   

5.
为提高行波保护的灵敏性与可靠性,提出一种基于S变换的新型波阻抗方向继电器。通过对正方向线路故障后初始行波特征的分析,定义方向继电器的背侧母线波阻抗。依据该阻抗及继电器正方线路波阻抗分别设置正、反方向阻抗圆,构成双阻抗圆的方向判据。利用S变换提取单频率的电压、电流初始行波,并计算出波阻抗,根据该阻抗在正、反方向阻抗圆内的位置判别故障方向。PSCAD/EMTDC仿真结果表明:该继电器能可靠、灵敏、超高速识别正反方向故障,其性能受故障初始角、故障距离、故障电阻等因素的影响小,能适应母线结构的变化。以该继电器构成的超高速方向纵联保护具有良好的工程应用前景。  相似文献   

6.
为提高纵联保护的灵敏性与可靠性,提出一种行波功率型的纵联保护新算法。该算法利用彼得逊等值模型,分析线路区内、区外故障时的初始行波分布特征,给出了初始行波无功功率定义。基于S变换提取单频率的初始电压、电流行波,计算出初始行波无功功率,根据线路两端的初始行波无功功率幅值之比构成保护判据。当被保护线路区外故障时,线路近故障点端几乎测量不到初始行波无功功率,而远故障点端测量到的初始行波无功功率数值较大;被保护线路内部故障时,线路两端均存在较大的初始行波无功功率。根据线路两端测量的初始行波无功功率相对大小关系,能够明显地区分出线路内外部故障。理论分析和PSCAD/EMTDC仿真结果表明,该保护性能可靠性高、动作速度快、动作门槛值整定简单、计算量小;在小故障初始角下仍能准确识别区内外故障,且不受故障类型、故障位置、过渡电阻和母线结构等因素影响。  相似文献   

7.
为提高行波方向元件的可靠性,在分析故障方向特征的基础上,提出一种新的幅值比较式方向元件。不同故障方向下,前行波和反行波特征不同。正方向时前行波和反行波差异较小,反方向时两者差异较大。利用S变换能量相对熵量化前、反行波之间的差异程度。考虑到电容式电压互感器(CVT)不能传变较高频率的电压分量,对前、反行波进行S变换后选择较低频率的分量计算能量相对熵,进而构成方向判据。基于PSCAD/EMTDC的仿真结果表明,所提方向元件能够快速可靠地判断故障方向,其性能不受故障初始角、过渡电阻、故障位置、故障类型、母线接线方式和电弧故障的影响。  相似文献   

8.
超高速暂态方向继电器的研究   总被引:23,自引:9,他引:23  
行波方向保护已研究了多年,但其本质上仍要受故障初始角、反射波等因素的影响。该文提出一种新型的方向保护核心元件——暂态方向继电器,它基于故障发生后一段时间内正向行波分量与反向行波分量间的能量大小关系来识别故障方向。该继电器的实用算法采用了适合暂态信号处理的小波技术,由小波多分辨分析来提取行波分量,并将行波分量的能量表征成小波变换谱能量(WTSE)。大量EMTP仿真试验表明:该继电器能可靠、灵敏、超高速地动作,其性能不受故障初始角、故障类型、故障距离、过渡电阻与电弧、母线接线方式的影响。以该继电器构成的超高速方向保护将具有很强的实用价值。  相似文献   

9.
传统行波极性比较式纵联保护可靠性受小故障初始角等因素影响较大。为提高行波纵联保护的可靠性,在分析线路两端电压和电流极性关系的基础上,提出一种新的极性比较式纵联保护算法。该保护算法利用故障后一段时间内故障电压和故障电流的S变换能量相对熵表征极性关系,进而根据线路两端S变换能量相对熵的比值来识别区内外故障。区内故障时,线路两端电压和电流的能量相对熵相差不大,其比值较小;区外故障时,线路两侧电压和电流能量相对熵差异明显,比值较大。基于PSCAD/EMTDC的仿真结果表明,该保护方案能够快速可靠地确定区内外故障,其性能不受故障初始角、过渡电阻、故障位置、故障类型和母线接线方式的影响。  相似文献   

10.
束洪春  彭仕欣 《高电压技术》2009,35(12):2963-2969
配电网络单相接地故障行波频率分布在几十~几百kHz范围,应用S变换检测故障行波几十kHz的高频暂态量来实现配网故障选线。故障配网母线零模电压的S变换幅值矩阵最高频率行中幅值最大的分量所对应的时刻即为母线零模电压的突变时刻,借此标定故障电压行波首波头到达母线的时刻,并记为故障初瞬。以故障初瞬保护安装处TA检测的故障线路电流行波与健全线路的电流行波的相位相反为依据,对故障零模电流进行S变换,故障线路与健全线路零模电流S变换辐角矩阵的最高频率行的辐角在故障初瞬相差180°,借此检出故障线路。该方法从行波中相对低的高频暂态量的层面检测行波信号相位特性,降低了对行波高速采集和处理速度的要求,耐受高阻接地和抗噪能力强。大量数字仿真试验表明,选线结果准确、可靠。  相似文献   

11.
提出了一种基于电流行波S变换样本熵的快速纵联保护新方法。利用故障后一段时间内线路两端故障电流行波的S变换样本熵比值来识别区内外故障。区外故障时,一侧的反行波和另一侧前行波为同一行波,波形相似,对应电流行波样本熵基本相同,其比值接近1。区内故障时,线路一侧的反行波和另一侧前行波为不同行波,波形相似度小,线路两端电流行波样本熵差异较大,其样本熵之比(数值小的与数值大的之比)最小。利用此特征可以确定线路区内外故障。仿真结果表明,所提出的纵联保护方案能够快速识别区内外故障,其性能不受故障类型、故障初始角、接地电阻、故障位置和母线结构的影响。  相似文献   

12.
利用线路暂态行波功率方向的分布式母线保护   总被引:15,自引:5,他引:15  
为避免电流互感器(TA)暂态饱和问题,提出了一种新型的分布式母线保护:基于小波变换识别各线路的暂态行波功率方向,然后比较所有线路的暂态行波功率方向来判别母线区内外故障。该母线保护可以利用已有的输电线行波方向保护而不需专用的母线保护设备,可以利用小波算法解决分布式结构中的同步问题,因而比常规分布式母线保护更易于实现和节省投资。理论分析和EMTP仿真试验表明:该母线保护动作快速可靠,基本不受故障类型、故障过渡电阻、故障距离和故障初始角的影响。  相似文献   

13.
为降低配电变压器故障引起的财产安全损失,提升电力系统运行稳定性,提出了基于小波变换的配电变压器差动保护相位补偿方法。首先,通过计算线模行波电流波动及其梯度绝对值大小,判断配电变压器有无故障,即创建保护启动判据。然后,依据等效线模行波差动电流的能量比确定故障区域,并计算小波变换故障区域的初始模量反向行波差动电流,以获得小波变换模极大值。最后,通过构建故障选极判据获取故障类型,计算故障状态下配电变压器空载合闸时的励磁电流,判断励磁涌流和内部故障电流的变化,并结合保护输出信号的开启和关闭,实现配电变压器的差动保护相位补偿。仿真实验表明,该方法可对区内故障进行有效鉴别,具有很强的可靠性及有效性。负载工况下,该方法相位补偿后电压电流的相位差一致,具有更好的稳定性。  相似文献   

14.
针对行波法测距波头时刻标定精度不足和波速不稳定的问题,提出一种基于GST-TT变换的单端故障行波测距方法。首先将采样的电压行波信号做解耦处理,提取线模电压信号,然后将线模电压信号进行广义S变换,提取适当高频频带作为故障特征频带,运用TT变换对角线位置元素聚高频、抑制低频的特性,在故障特征频带内对波头到达测量端时刻进行精确标定,根据不依赖具体行波波速的故障测距计算方法得出故障距离。该方法可以提高波头时刻的标定精度,降低波速不稳定对故障测距的影响。通过PSCAD仿真验证,根据结果可知,该方法测距精度较高,在无噪声干扰情况下,平均相对误差为0.25%;同时也可知晓该方法具有较强的耐受过渡电阻能力和抗噪能力。  相似文献   

15.
由于传统双端行波法采样信号时间的不精准以及波速的衰减作用,对输电线路行波故障测距的结果造成巨大的影响,为了提高故障定位的精准度,提出一种改进的行波双端测距法。该方法利用高频传感器对行波的波头进行采样有效提高测距精度,并提出修正波概念,在传统双端行波算法基础上进一步改进,减小了测距误差。基于MATLAB仿真软件搭建双端输电线路模型,利用小波变换对行波信号进行分析。仿真结果表明,该方法不受故障距离、故障类型及过渡电阻的影响,适应性强,能实现精准定位。  相似文献   

16.
基于小波变换的行波电流极性比较式方向保护   总被引:12,自引:12,他引:12  
张举  张晓东  林涛 《电网技术》2004,28(4):51-54
文章提出了基于检测行波电流波头极性的行波电流极性比较式方向保护.对电流行波信号α模量进行小波变换后可由小波变换模极大值的极性方便的区别出区内故障与区外故障,同时分析了行波电流极性比较式方向保护的几个影响因素,如母线结构、接地电阻、阻波器和故障初始角;还对双回线路一回线路故障时另一回可能误动的情况进行了仿真分析,并给出了解决误判的方法.仿真试验结果表明,利用小波变换结果来实现行波电流极性比较式方向保护是切实可行的,并且在硬件满足要求的情况下可以投入实际应用.  相似文献   

17.
极化电流行波方向继电器   总被引:4,自引:2,他引:2  
电容式电压互感器不能有效传变宽频带的电压故障行波信号,使得传统利用电压故障行波构成行波方向继电器的保护算法不能应用于实际电力系统保护中,为此提出了一种极化电流行波方向继电器。该方向继电器以电压故障行波中工频分量初始极性与电流故障初始行波的波头极性相比较判定故障方向,解决了传统行波方向继电器因不能有效获取宽频带电压故障行...  相似文献   

18.
线路的后备保护在混合直流输电系统中至关重要,但现有后备保护受分布电容和过渡电阻的影响较大,严重影响保护的可靠性和快速性。为解决上述问题,提出一种基于测量波阻抗相位特征的混合三端直流线路纵联保护方案。通过分析混合直流输电线路区内、外故障时线路两端测量波阻抗的差异性,利用S变换提取单频率的电压、电流初始行波,根据测量波阻抗相位差异构造判据区分区内、外故障。PSCAD 仿真表明,所提保护方案能可靠快速地识别区内外故障,具有较强的耐受过渡电阻的能力,并且不受故障电阻和分布电容的影响,有效提高了线路后备保护的可靠性和快速性。  相似文献   

19.
行波信号的有效提取是高压电网行波保护和行波故障定位的前提,针对传统电容式电压互感器不能传变暂态高频信号的缺陷,提出了一种电压行波信号的提取方法。利用电容式电压互感器或电流互感器的套管末屏电容,设计了电压行波提取电路,考查了其频率响应特性。利用EMTDC分别仿真了提取电路对不同频率段、不同故障初始角和不同故障电阻的暂态电压信号提取响应,理论分析和仿真结果表明:该方法能够有效地提取暂态高频信号,正确反映一次侧特定频带的电压行波特征,很好地解决了行波保护或暂态量保护及故障定位中暂态电压行波提取的难题。  相似文献   

20.
高压直流输电线路的行波保护存在对装置采样率要求高及耐受过渡电阻能力差等问题。作为后备保护的纵联电流差动保护,为了防止线路分布电容等问题导致的误动,失去了速动性的优点,动作时间较长。利用HVDC线路发生区内外故障时,两端保护装置检测的电压和电流突变量的极性差异,提出基于Hilbert-Huang变换的突变量方向纵联保护方法。在分析不同故障时电压和电流突变量相位差别的基础上,采用Hilbert-Huang变换求取突变量相位差,识别两者的极性差异,进而判断故障发生的方向。基于PSCAD/EMTDC搭建了高压直流输电仿真模型,仿真结果表明,所提方法在各种故障情况下都能够实现保护的快速识别,可靠性高,且受过渡电阻的影响较小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号