首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
锂电池荷电状态(SOC)的准确估算是制约电动汽车发展的关键技术。基于Thevinin模型建立状态空间方程组,将无迹卡尔曼滤波(UKF)应用到锂电池SOC估算中,通过无迹变换(UT)的方式避免对非线性状态方程的线性化,在不增加系统求解复杂度的前提下提高滤波精度,实现非线性条件下锂电池SOC的准确估算。仿真实验结果表明,UKF估算锂电池SOC的整个过程误差控制在1%以内,其精度明显高于拓展卡尔曼滤波(EKF)的4%,实现了锂电池SOC估算精度的提高,更适用于电动汽车锂电池SOC的估算。  相似文献   

2.
电池荷电状态(State of Charge,SOC)作为电池管理系统中的重要参数之一,为保证电池管理系统的安全可靠和延长电池循环使用寿命,准确估算SOC具有重要意义。通过建立戴维宁(Thevenin)等效电路模型,结合卡尔曼滤波(KF)和扩展卡尔曼滤波(EKF)算法,实现对锂电池SOC估算精度进行对比研究。仿真结果表明,EKF算法仿真估算SOC精度明显高于KF的估算精度,估算精度可达2%。  相似文献   

3.
锂离子电池作为新能源存储的载体,是执行“双碳”目标的重要助力,精确估算电池荷电状态(state of charge,SOC)能够有效辅助电池管理,进而延长电池使用寿命。针对卡尔曼滤波类算法的SOC估算效果受磷酸铁锂电池特性制约的问题,该文提出一种比例积分微分(proportional integral differential,PID)控制与扩展卡尔曼滤波(extended Kalman filter,EKF)联合方法。该方法利用PID控制原理设计SOC初值补偿策略并优化EKF算法的状态变量修正过程,可降低磷酸铁锂电池特性对算法的影响。实验结果表明,与EKF算法相比,所提方法在估算磷酸铁锂电池SOC时拥有更高的估算精度与更快的收敛速度,对电池模型误差与采样噪声表现出较强的鲁棒性。  相似文献   

4.
刘思佳  代高强  周迅  孟令锋  黄勇 《电源技术》2021,45(10):1256-1259
基于电池模型的荷电状态(SOC)估算方法,模型参数的误差会直接影响估算结果.根据扰动观测器原理,建立了锂电池电压扰动观测器模型,与扩展卡尔曼滤波(EKF)算法相结合,设计了具有电池电压扰动补偿功能的锂电池SOC估算方法.由电压扰动观测器得到的补偿电压变量,可实时修正数学模型中的电池状态变量偏差对SOC估算的影响.仿真结果表明当电池数学模型存在滞后电压等动态响应误差时,该方法在充放电过程中SOC估算精度要优于常规EKF估算方法.  相似文献   

5.
针对实际运行中电池参数的变化,建立了基于Thevenin模型的锂离子动力电池状态空间模型,采用递推最小二乘法进行模型参数在线辨识,对参数做出实时修正,同时克服广义卡尔曼滤波(EKF)估算的不足,提出了基于无色卡尔曼滤波(UKF)估算锂电池SOC估算的新方法。实验结果验证了在同等条件下,UKF比EKF具有更好的滤波估算精度,提高了系统的适应性。  相似文献   

6.
估算锂电池的剩余电量一直是当前研究的热点,由于锂电池充放电过程中复杂的电化学反应,电池荷电状态(SOC)与其影响因素呈现非线性动态关系,导致难以实时精确估算SOC。本文提出了一种基于扩展卡尔曼滤波(EKF)算法,并选用戴维南(Thevenin)模型来对锂电池的剩余电量进行估算。本文在戴维南模型的基础上建立了电池的非线性状态空间方程,通过实验和仿真的结果表明,该算法的误差小于3.00%,精度达到了应用的要求。  相似文献   

7.
基于灰色扩展卡尔曼滤波的锂离子电池荷电状态估算   总被引:1,自引:0,他引:1  
准确估算电池荷电状态(SOC)是电池管理系统的核心技术之一。为提高扩展卡尔曼滤波(EKF)估算电池SOC精度,将灰色预测模型(GM)和EKF融合,构建灰色扩展卡尔曼滤波(GM-EKF)算法用于电池SOC估算。该算法首先用GM(1,1)替代EKF算法中Jacobian矩阵,对当前时刻电池系统状态预测,即实现系统状态先验估算;再通过观测值对系统状态进行更新和修正,获得后验估算值,实现对电池SOC的估算;最后在自主搭建的电池实验平台上对电池进行模拟工况放电实验。实验结果表明,GM-EKF算法相比EKF算法,估算电池SOC具有更高的精度,估算误差不超过±0.005。研究结果对电池管理系统估算电池SOC具有现实指导意义。  相似文献   

8.
随着电动汽车产业的迅速发展,实时掌握动力蓄电池所处荷电状态,保证电池长期处于良好工作状态成为当前研究重点。由于锂电池充放电过程中复杂的电化学反应,电池荷电状态(SOC)与其影响因素呈现非线性动态关系,导致难以实时精确估算SOC。本文中,基于扩展卡尔曼滤波(EKF)修正算法对动力蓄电池SOC进行估算,并与传统算法进行比较。结果表明,该算法有效解决了采用安时积分法难以估计SOC初始值和累计误差的问题,大大提高了估算精度,使最大估算误差保持在2.0%以内。  相似文献   

9.
在船舶锂电池储能系统(RESS)应用中,准确估计剩余容量(SOC)是储能系统安全充放电的基础,SOC无法直接测量,只能通过测量电池外电压电流,根据电池特性进行计算得到。目前,传统SOC估计算法精度低,现流行的算法存在计算复杂的问题,并对依赖于SOC初始值精度,在运用中问题重重,难以保证船舶RESS的安全、寿命和容量利用率。为提高SOC估算精度,对锂电池的等效电路PNGV模型进行试验及参数辨识,并结合拓展卡尔曼滤波(EKF)算法,测量锂电池电压及电流,综合进行SOC的估算,经试验,SOC估算精度相比传统算法得到了提高,并解决了SOC估计对初值的要求高的问题,由此证明了PNGV模型结合扩展卡尔曼滤波算法精确估计SOC的可行性。  相似文献   

10.
动态的实时估计锂离子电池荷电状态(state of charge,SOC)是锂离子电池管理系统研究的关键技术。针对扩展卡尔曼滤波(EKF)估计SOC误差大的不足,基于二阶RC等效电路模型,提出了一种基于迭代中心差分卡尔曼滤波(ICDKF)算法的磷酸铁锂电池SOC估计方法。利用Matlab进行了仿真,并与扩展卡尔曼滤波和中心差分卡尔曼滤波(CDKF)算法进行了效果对比,从仿真结果可以看出,该SOC算法有效地降低了估计误差,与EKF相比,具有更好的滤波估计精度。  相似文献   

11.
作为动力锂电池的核心参数,锂电池的荷电状态(SOC)的精度估算决定了储能系统控制的精度和管理的可靠性,目前业内对于SOC估计算法的研究不够深入,导致精度低,计算量大,并且依赖于初始值精度,工程应用难度大,以至于动力锂电池管理系统的精确控制和管理难以实现。对电池等效电路PNGV模型进行改进,提高了模型精度,并结合拓展卡尔曼滤波算法(EKF)实现了高精度的SOC估计,通过电池实测和仿真验证,该算法提高了SOC估算精度,解决了SOC估计依赖初值精度问题,具有较高的工程应用价值。  相似文献   

12.
采用改进的扩展卡尔曼滤波(EKF)对电池进行荷电状态(SOC)估算,运用Levenberg-Marquardt方法对改进EKF的协方差矩阵进行修正。相对于标准EKF而言,改进EKF估计SOC的绝对误差降低了0.526%,精度得到提高。  相似文献   

13.
基于迭代扩展卡尔曼滤波算法的电池SOC估算   总被引:1,自引:0,他引:1  
采用卡尔曼滤波算法估算动力电池的荷电状态(SOC),其估算精度与SOC初值无关,但与动力电池的等效模型有关。为进一步提高SOC估算精度,充分考虑温度对电池模型参数的影响,改进电池的二阶RC等效电路模型,建立电池的非线性状态空间模型;为保证SOC估算结果的收敛性,将迭代滤波理论引入到扩展卡尔曼滤波(EKF)算法中;采用Levenberg—Marquardt(LM)方法优化迭代过程,并将其应用于动力电池SOC的估计。实验结果表明,与EKF和迭代EKF(IEKF)算法相比,采用改进的电池等效模型和优化算法,具有较好的收敛性,且提高了估算SOC的精度。  相似文献   

14.
基于UKF的动力电池SOC估算算法研究   总被引:1,自引:0,他引:1  
动力电池荷电状态(SOC)在线估算对于混合电动汽车蓄电池管理系统有着举足轻重的意义。针对动力电池SOC估算算法中应用广泛的扩展卡尔曼滤波法(EKF)在非线性系统应用时存在的精度损失问题,采用无迹卡尔曼滤波法(UKF)以提高估算精度。研究了一种改进的电动势(EMF)电池等效模型,讨论了该模型的参数和空间状态方程,并将UKF应用于该模型估算SOC。由实验分析可知,对比采用开路电压法得出的SOC真实值,UKF结合EMF电池等效模型在估算算法中有较高的精度,其估算误差小于5%,且SOC估计结果明显优于EKF,具有较高的实用价值。  相似文献   

15.
给出了动力锂电池管理系统的整体结构,并且对主控板和子控板的布局与功能进行了详尽介绍。建立了适合于Kalman滤波估计的锂离子动力电池的状态空间模型,该数学模型关系简单,易于工程实现。在此基础上,对模型进行了线性化处理,采用安时积分法、开路电压法结合扩展卡尔曼滤波(EKF)算法实现了对电池荷电状态(SOC)的准确估算。实验结果表明,EKF算法在估算过程中能保持很好的精度,对初始值的误差有很强的修正作用,在SOC估计中有很强的应用价值。  相似文献   

16.
以锂电池的荷电状态估算为目的,对传统锂电池等效电路模型进行改进,提高了模型的准确性,使之能更好地反应锂电池内部状态。以标称容量为2 000 m Ah,额定电压为3.7 V的18650锂电池作为研究对象,采用最小二乘法分别对该锂电池模型进行充放电方向的参数辨识。运用双卡尔曼滤波算法估算锂电池的SOC,并设计了基于安时计量法的相关测试实验。研究结果表明,双卡尔曼滤波算法估算18650锂电池SOC的绝对误差值小于0.019,具有较高的估算精度,在锂电池SOC估算领域内具有很高的实用价值。  相似文献   

17.
《电池》2020,(4)
扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF)算法估算电池荷电状态(SOC)依赖等效模型参数的准确性,估算精度低。容积卡尔曼滤波(CKF)算法的滤波性能良好。利用自适应CKF(ACKF)算法估算电池SOC,自适应调节过程噪声协方差和量测噪声协方差,提高估算SOC的精度。对锂离子电池建立二阶RC等效电路模型,在不同工况下进行充放电,用卡尔曼滤波算法在线辨识等效模型的参数,ACKF算法实时估算SOC。ACKF算法估算SOC的鲁棒性较强,精度在1. 5%以内。  相似文献   

18.
为了估算锂离子动力电池的荷电状态(SOC)。基于锂电池外特性的实验数据,建立电池等效电路模型,用分段线性回归的方法来辨识模型参数。在Matlab中搭建电池模型,并研究了扩展卡尔曼滤波(EKF)算法在估算SOC中的应用。结果表明,所选择的Thevinin模型能真实地模拟电池特性,该算法能有效地解决SOC初值估算不准和累积误差的问题。  相似文献   

19.
扩展卡尔曼滤波法(EKF)被认为是一种精度较高的电动汽车动力电池荷电状态(SOC)估算法,但是观测方程误差会对SOC估算结果带来影响。对EKF滤波过程进行改进,根据观测方程的误差对原EKF滤波过程增设动态卡尔曼增益修正系数,提出基于卡尔曼增益动态修正的动力电池SOC估算法。仿真结果表明EKF法可以有效克服SOC初始值不准确所造成的估算误差,动态卡尔曼增益修正系数可以进一步减小由于观测方程误差造成的SOC估算误差,使估算误差保持在5%之内。  相似文献   

20.
樊波  栾新宇 《电测与仪表》2018,55(20):46-52
针对储能磷酸铁锂电池并根据磷酸铁锂电池电化学阻抗谱研究,提出一种双RC并联环节的改进PNGV模型,在HPPC实验下辨识模型参数。针对扩展卡尔曼滤波(EKF)算法在估计电池荷电状态(SOC)时不能实时估测噪声的缺点,将Sage-Husa自适应算法引入EKF算法得到自适应扩展卡尔曼滤波算法,并通过对噪声实时预测和修正来提高电池SOC估计精度。在Matlab/Simulink中搭建电池及SOC估计仿真模型并在模拟动态工况下进行仿真。仿真结果表明改进PNGV模型精度优于PNGV模型;自适应扩展卡尔曼滤波算法估计电池SOC时较EKF算法收敛速度更快,估计精度更高。模型及算法的改进取得较好的效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号