首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Food chemistry》1999,67(3):217-222
Water soluble gums were extracted from seeds of achi (Brachystegea eurycoma) and Ogbono (Irvingia gabonesis). The rheological properties of each gum were studied at temperatures from between 10–70°C at 1.0, 1.5, 2.0, and 2.5% concentrations. The effects of small quantities of the gums on some of the quality characteristics of an ice cream mix were investigated. These characteristics were compared with those of some commercial food gums, carboxymethyl cellulose (CMC), Kappa carrageenan (KCA), and sodium alginate (SA). The viscosities of both gums were time-independent and Ogbono seed gum (OSG) appeared to be more pseudoplastic than Achi seed gum (ASG). The pseudoplastic nature was not affected by increasing temperature. The temperature control was more critical for OSG (Ea. 20.2 MJ mol−1) than ASG (Ea 13.9 MJ mol−1) during processing. The viscosity behaviour of ASG indicates that it may be a highly branched polysaccharide. The overrun, viscosity, shapefactor and meltdown values of the ice cream, when ASG was added as stabilizer, were 95%, 0.035 PaS, 72% and 32%, respectively. Values for OSG were 70%, 0.025 PaS, 65% and 37.7%, respectively. Only values for the ASG cream fell within the ranges of values obtained for the commercial gums. ©  相似文献   

2.
针对微波复热鸡米花的加工工艺,在预实验基础上选用黄原胶、卡拉胶以及魔芋胶以不同比例复配,研究其对最终产品品质的影响。微波复热后以鸡米花的脆性作为主要评定指标,同时对制品进行物理性质分析及感官评价,筛选出微波复热后品质最优的胶体复配比例。结果表明,向浸蘸溶液中添加三种食用胶中的任意一种或任意两种食用胶复配添加时,均可以显著改善微波复热后鸡米花的脆性(p<0.05)。而三种食用胶等比例复配对微波复热鸡米花品质则没有明显改善作用。卡拉胶1.00%的添加量会对产品风味产生不良影响。其中0.50%黄原胶和0.50%卡拉胶复配时,微波复热后鸡米花的脆性显著提高,外壳水分和油分含量显著降低(p<0.05),感官质量也较高。这表明向浸蘸溶液中添加0.50%黄原胶和0.50%卡拉胶复配食用胶可以很大程度上改善微波复热鸡米花的食用品质。  相似文献   

3.
Rheological properties such as flow behaviour, viscosity, viscoelasticity, and thixotropy of solutions of β-glucan purified from barley fibre concentrate and twelve commonly used food gums, alone and in combinations, were characterised using an oscillatory rheometer. Pure gums and gum combinations were evaluated at 0.5% and 0.75% (w/w) total gum concentration in aqueous medium, whereas the β-glucan/gum ratios were kept at 90/10 or 80/20 (w/w). Viscosity synergism was observed for β-glucan solutions in combination with xanthan, iota-carageenan, and carboxymethyl cellulose. However, barley β-glucan blends with lambda-carageenan, Konjac, high- and low-methoxyl pectin, microcrystalline cellulose, alginate, and gum arabic showed marked lowering of the viscosity compared to β-glucan alone. In addition, β-glucan/xanthan gum blends demonstrated improved shear tolerance compared to xanthan dispersions alone, and soft gel transformation. Non-thixotropic behaviour was observed for 0.5 and 0.75% (w/w) β-glucan dispersions and its gum combinations. None of the gum combinations studied demonstrated thixotropy.  相似文献   

4.
The effects of the addition of two hydrocolloids—locust bean (LBG) and xanthan gums—at two concentrations (0.2 and 0.5%, w/v) on the intensity of the aroma of limonene and of isopentyl acetate solutions was studied using the pairwise ranking test. Previously, the rheological behaviour of the studied gums was analysed, finding that while LBG solutions were slightly pseudoplastic at the lower concentration and more so at the higher one, the xanthan solutions were clearly pseudoplastic at both concentrations. Addition of 0.2% LBG did not alter the limonene aroma intensity perceived, but on adding 0.5% LBG, above the coil overlap concentration (c*), the decrease in aroma intensity was significant. Addition of xanthan gum at any concentration did not modify the limonene aroma intensity perceived by judges, which can be attributed to the low value of c* for solutions of this gum. No difference in isopentyl acetate aroma was found among samples.  相似文献   

5.
Breading losses from poor adhesion of coating to food products is a major concern in the battered and breaded foods industry. The primary aim of this study was to determine effects of protein and gum sources and amounts on the adhesion of a commercial breading mix to poultry skin. Protein sources used were whey, soy, nonfat dry milk, egg albumen, and gelatin. Gum sources were sodium carboxymethyl cellulose (CMC), guar, tragacanth, and xanthan. Among the proteins, gelatin and egg albumen most effectively improved adhesion. For all gums studied, only CMC was significantly better at improving adhesion. Increased levels of gums and proteins in breading did not affect adhesion significantly.  相似文献   

6.
The emulsifying properties and interfacial behaviour of conventional arabic gum (Acacia Senegal, control gum) and after thermal maturation (EM1 and EM2) were studied. All gums presented good oil in water emulsifying capacities. However, after 20–60 high-pressure homogenization passes, matured gums formed more homogenous emulsions with smaller mean oil droplets (0.4 μm) than the control gum (0.65 μm). Modification of pH from 4.5 to 7.0 did not affect sample characteristics. The film-forming capability of all samples at air–water interface was studied using adsorbed and spread techniques. The greater the amount and molecular mass of the arabinogalactan protein (AGP) component in the gum, the better the interfacial properties (tension drop kinetic and interfacial tension final values). Good dilatational elasticity was found for all three gums samples, corresponding to highly elastic interfacial films. The spread films of matured gum EM2 rearranged during compression, passing through liquid expanded, liquid condensed into solid states. Conversely, control and EM1 gums only formed liquid expanded films and smaller surface coverage than EM2. Analytical interfacial results confirm the improved emulsifying properties of matured gums. The properties of the AGP molecules in the gums could be responsible for these differences.  相似文献   

7.
Rheological properties of gluten-free bread formulations   总被引:1,自引:0,他引:1  
In this study, the rheological properties of rice bread dough containing different gums with or without emulsifiers were determined. In addition, the quality of rice breads (volume, firmness and sensory analysis) was evaluated. Different gums (xanthan gum, guar gum, locust bean gum (LBG), hydroxyl propyl methyl cellulose (HPMC), pectin, xanthan–guar, and xanthan–LBG blend) and emulsifiers (Purawave and DATEM) were used to find the best formulation for gluten-free breads. Rice dough and wheat dough containing no gum and emulsifier were used as control formulations. The rice dough containing different gums with or without emulsifiers at 25 °C showed shear-thinning behavior with a flow behavior index (n) ranging from 0.33–0.68 (except pectin containing samples) and consistency index (K) ranging from 2.75–61.7 Pa sn. The highest elastic (G′) and loss (G″) module were obtained for rice dough samples containing xanthan gum, xanthan–guar and xanthan–LBG blend with DATEM. When Purawave was used as an emulsifier, dough samples had relatively smaller consistency index and viscoelastic moduli values compared to DATEM. The viscoelastic parameters of rice dough were found to be related to bread firmness. Addition of DATEM improved bread quality in terms of specific volume and sensory values.  相似文献   

8.
《Food Hydrocolloids》2001,15(4-6):533-542
The emulsification properties of 14 hydrocolloid gums (propylene glycol alginate, gellan, carrageenan, pectin, methylcellulose, microcrystalline cellulose, gum arabic, locust bean gum, guar, xanthan, mustard, flaxseed, fenugreek, oat) were investigated. Gum dispersions were prepared in water (0.5%) and emulsified with 40% oil using a Polytron homogenizer. Emulsion stability was determined by centrifugation and storage time, surface and interfacial tension by Du Nouy ring, particle size by integrated light scattering and overall morphology by light microscopy. When compared to the other gums in this study, fenugreek produced a very stable emulsion. Fenugreek was more efficient than other gums in lowering the interfacial free energy, its emulsion was composed of very small oil droplets (70%<1 μm) and under the light microscope appeared as uniform droplets with a narrow size distribution.  相似文献   

9.
Rheological properties of solutions prepared using xanthan (XG), locust bean (LBG) or sodium carboxymethyl cellulose (CMC) gums, and their binary mixtures were studied. The influence of shear rate, total gum content, measurement time and temperature on the apparent viscosity was investigated. In the binary mixtures, the presence of different gum ratios at several total gum content was also analysed. XG solutions were always the most stable, providing high viscosity values which rose notably with increasing gum content. XG/LBG and CMC/XG mixtures depicted high values of viscosity for very low gum amounts. Viscosity did not change with measurement time in mixtures containing XG, whereas varied with measurement temperature. This variation was lower for samples with larger total gum content. The viscosity was also modified when different gum ratios were tested. A mathematical model was proposed to evaluate the combined effect of temperature, concentration and shear rate on the apparent viscosity.  相似文献   

10.
《Food chemistry》1987,23(4):277-294
Effects of various naturally occurring nonprotein substances (carbohydrates, polysaccharides, fats and salts) on enzymatic hydrolysis of soy protein isolate and plastein formation from hydrolyzed soy protein were investigated. Relative extent of hydrolysis and plastein formation were measured as protein solubility in 10% trichloroacetic acid (TCA) since this method was found suitable for analysis of turbid, viscous and/or low protein samples. The presence of guar, xanthan, locust bean and arabic gums, arabinogalactan, unsaturated fatty acids (2%), salt mixture and xylan were found to enhance soy protein peptic hydrolysis at 0·5% enzyme/substrate; unsaturated fatty acids (1%) inhibited hydrolysis. At enzyme/substrate of 3·5%, hydrolysis was enhanced by xanthan gum, unsaturated fatty acids and sodium chloride but inhibited by gum karaya, salt mixture, starch, cellulose, and saturated fatty acids. Plastein synthesis was inhibited by xanthan, locust bean and guar gums but stimulated by arabinogalactan. Several nonprotein substances were found to interfere with the TCA solubility assay. Positive interference was noted for systems containing saturated and unsaturated fatty acids and magnesium, but negative interference was observed for systems containing guar gum, xanthan gum, calcium chloride and gum arabic.  相似文献   

11.
Crude fenugreek gum (3.74% protein) was purified by dissolving in aqueous solvent and centrifugation to remove impurities which yielded a purified gum fraction containing 1.10% protein residue. Further purification of the gum was achieved by treating the gum solution with phenol to obtain protein free fenugreek gum (0.16% protein residue). The three types of fenugreek gums were evaluated for: molecular weight, surface activity and rheological performance. Surface and interfacial tension, measured by a Du Nouy ring, indicated that the removal of protein in the gum significantly reduced its surface activity. However, the crude fenugreek gum exhibited lower intrinsic viscosity and radius of gyration compared to the purified and protein free fenugreek gums. It was found that both protein residue and gum concentration affected the elastic modulus (G′), viscous modulus (G″), and complex viscosity (η*).  相似文献   

12.
Rheology of chestnut flour (CF) doughs with arabic gum (AG), carboxymethyl cellulose (CMC), guar gum (GG) and tragacanth gum (TG) at different concentrations (up to 2.0%) were determined at 30 °C using a controlled stress rheometer. The mixing characteristics at 30 °C were achieved using Mixolab® apparatus. Shear (0.01–10 s?1), oscillatory (1–100 rad s?1 at 0.1% strain), creep‐recovery (50 Pa for 60 s) and temperature sweep (30–100 °C) tests were performed. Rheological properties were significantly modified by gum added. Apparent viscosity of CF doughs, storage and loss moduli increased at content of AG (above 0.5%), CMC (at 1.0%), GG (above 1.5%) and TG (at 1.0%). Flow curves and mechanical spectra were fitted using Cross model and power models, respectively. The gelatinisation temperatures increased with gums. The same pasting trend was noticed using Mixolab®. Creep‐recovery data, fitted by Burgers model, showed that elasticity of CF doughs improved with GG.  相似文献   

13.
Equivalent sweetness of aspartame relative to two sucrose concentrations (10% and 20% w/w) were determined in water and in hydrocolloids gels. The influence of the texture of three hydrocolloids gelled systems—gellan gum, κ-carrageenan, and κ-carrageenan/locust bean gum (LBG)—at two gums concentrations (0.3% and 1.2% w/w) on the equivalent sweetness of aspartame were then studied. For the three gelled systems, the increase in hydrocolloid concentration produced a significant increase in the true rupture stress and in the deformability modulus values. For both κ-carrageenan and mixed gels the true rupture strain values increased when increasing hydrocolloid concentration while for gellan gels, decreased. For the same hydrocolloid concentrations the κ-carrageenan/LBG gels showed the largest strain at rupture and gellan gels the smallest (most brittle). For both soft (0.3% gum) and hard (1.2% gum) gellan gels and κ-carrageenan gels, the concentrations of aspartame needed to deliver a sweetness intensity equivalent to that of gels with 10% sucrose (0.079–0.087% w/w) were similar to those obtained for aqueous solutions (0.084% w/v). For hard κ-carrageenan/LBG gels the corresponding concentration of aspartame was slightly lower. For all gelled systems the concentrations of aspartame needed to deliver a sweetness intensity equivalent to that of gels with 20% sucrose were higher for soft gels than for hard gels.  相似文献   

14.
The effects of various gum types [hydroxypropylmethylcellulose (HPMC), guar gum, xanthan gum, gum arabic] on the quality of deep‐fat fried chicken nuggets were studied. Chicken samples, 0.04 m in diameter and 0.015 m in thickness taken from the breast portion, were coated with batters composed of a 3:5 solid to water ratio by immersion. The solid content of batter formulations contained equal amounts of corn and wheat flours, 1.0% gum, 1.0% salt and 0.5% leavening agent. As control, batter without gum addition was used. Samples were fried at 180 °C for 3, 6, 9 and 12 min. The hardness and oil content of the chicken nuggets increased whereas the moisture content decreased during frying. HPMC and xanthan gums reduced oil absorption significantly compared with other gums and the control. When gum arabic was added to the batter formulation, a product with the highest oil content and porosity was obtained. Copyright © 2005 Society of Chemical Industry  相似文献   

15.
The viscosity of diluted guar gum solutions and the viscosity of xanthan and guar gum mixture solutions have been studied. Guar gum solutions showed pseudoplastic behaviour. Apparent viscosity increased with gum concentration and decreased with the temperature at which viscosity was measured. A maximum in the plot of viscosity versus increasing dissolution temperature was observed at 60 °C. This behaviour was related to differences in molecular structure of the polymers solved at different temperatures. Mixtures of xanthan and guar gum showed a higher combined viscosity than that occurring in each separate gum. This synergistic interaction was affected by the gum ratio in the mixture and dissolution temperature of both gums. The effect of polysaccharide concentration (1.0, 1.5 and 2.0 kg m−3), xanthan/guar gum ratio (1/5, 4/2, 3/3, 4/2 and 5/1) and dissolution temperature (25, 40, 60 and 80 °C for both gums) on the viscosity of solutions of mixtures were studied. The highest viscosities were observed when 2.0 kg m−3 gum concentration was used together with a ratio of xanthan/guar gum of 3/3 (w/w) and dissolution temperature of 40 and 80 °C for xanthan and guar gum, respectively. © 2000 Society of Chemical Industry  相似文献   

16.
Rheological properties of solutions containing different ratios and concentrations of three hydrocolloids, i.e., basil seed gum (BSG), guar gum and carboxymethyl cellulose (CMC) were investigated. In addition, the effect of sucrose, skim milk powder and emulsifier, as key ice cream constituents, on the rheological properties of selected hydrocolloids was studied. Power law model was used to describe the rheological properties. Results showed that flow behaviour index of selected hydrocolloids, without any additives, was in the range of 0.501–0.789, while consistency coefficient and apparent viscosity of samples varied from 0.052 to 0.750 Pa.sn, and 0.014 to 0.110 Pa.s, respectively. Addition of sucrose and emulsifier to hydrocolloids led to more viscous and more pseudoplastic solutions, whereas skim milk decreased viscosity and pseudoplasticity in some cases. BSG as a new source of hydrocolloid revealed promising results. Synergistic interactions between gums improved the viscosity of solutions, especially in the case of CMC and guar.  相似文献   

17.
林鑫  杨宏 《食品科技》2021,(3):245-252
为了改善马铃薯淀粉加工特性,选用瓜尔胶、羧甲基纤维素钠和黄原胶3种食品胶分别与马铃薯淀粉复配后进行干热处理,研究食品胶协同干热处理对马铃薯淀粉糊化、老化和流变特性的影响。研究发现,中3种食品胶协同干热处理均能够降低糊化温度与糊化焓,并且均能增强淀粉体系稳定性,使其呈现出弹性流体性质,不仅如此还均能提高淀粉糊热稳定性以及耐剪切能力,此外均能增强淀粉凝胶的冻融稳定性。结果表明,3种食品胶协同干热处理均能起到改善马铃薯淀粉加工特性的作用,对其改善程度对比分析发现,黄原胶协同干热处理改善马铃薯淀粉特性效果最好。  相似文献   

18.
Gums are complex carbohydrate molecules which have the ability to bind water and form gels at low concentration. These carbohydrates are often associated with proteins and minerals in their structure. Gums are of various types such as seed gums, exudate gums, microbial gums, mucilage gums, seaweeds gums, etc. Exudate gums are plant gums which ooze out from bark as a result of a protection mechanism upon injury. Exudate gums have been used by humans since ancient times for various applications due to their easy availability. The main characteristics which make them fit for use in various applications are viscosity, adhesive property, stabilization effect, emulsification action and surface-active property. Major applications of these gums are in food products, the paper, textile, cosmetics and pharmaceutical industries, oil-well drilling, etc. In the present paper, the chemistry, properties, processing and applications of commercially available exudate gums such as acacia gum or gum arabic, karaya gum, ghatti gum and tragacanth gum are discussed. Recent literature reveals that apart from the above mentioned applications, these gums also have nutritional properties which are being explored. Other gums cannot replace them because of their certain unique characteristics. © 2020 Society of Chemical Industry  相似文献   

19.
研究了离子胶(羧甲基纤维素钠、海藻酸钠、卡拉胶、壳聚糖)不同添加量(0∶1、1∶9、3∶7)对玉米磷酸酯双淀粉糊化特性、凝胶质构特性、溶胀度和吸油率等性质的影响。结果表明,阴离子胶(羧甲基纤维素钠、海藻酸钠、卡拉胶)降低了玉米磷酸酯双淀粉的峰值黏度、衰减值;而阳离子胶(壳聚糖)使玉米磷酸酯双淀粉的峰值黏度、衰减值显著增加。阴离子胶使玉米磷酸酯双淀粉凝胶硬度下降,而壳聚糖则使其凝胶硬度上升。阴离子胶能促进玉米磷酸酯双淀粉的溶胀,但壳聚糖抑制其溶胀。壳聚糖使玉米磷酸酯双淀粉吸油率增加。离子胶对玉米磷酸酯双淀粉性质的影响,不仅与离子胶自身性质有关,而且可能与二者之间的静电作用密切相关。  相似文献   

20.
An animal model has been used to investigate the immunogenicity and non-specific irritant properties of exudate gums. The materials studied were four preparations of gum arabic (Acacia spp.), two of gum karaya (Sterculia spp.), two of gum tragacanth (Astralagus spp.) and a residue obtained after ethanol extraction of gum arabic. Groups of animals were intradermally immunized with the gum in complete Freund's adjuvant. Serum antibody levels were measured by an ELISA technique and delayed hypersensitivity responses by a footpad swelling test. Antigenic cross-reactivity within each gum species was tested in a crossover fashion. All gum preparations elicited systemic immune responses after immunization. Further processing reduced immunogenicity, although there was no evidence that systemic immunity to these complex polysaccharide antigens responses could be completely abolished by processing or purification. The ethanolic extract, and some of the gum preparations, particularly tragacanth and karaya, caused considerable footpad swelling when injected intradermally. It is concluded that processing and awareness of subspecies differences can reduce the inherent immunogenicity and potential irritant effects of exudate gums.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号